Shen-Ao Liang, Tianxin Ren, Jiayu Zhang, Jiahui He, Xuankai Wang, Xinrui Jiang, Yuan He, Rajiv C. McCoy, Qiaomei Fu, Joshua M. Akey, Yafei Mao, Lu Chen
{"title":"A refined analysis of Neanderthal-introgressed sequences in modern humans with a complete reference genome","authors":"Shen-Ao Liang, Tianxin Ren, Jiayu Zhang, Jiahui He, Xuankai Wang, Xinrui Jiang, Yuan He, Rajiv C. McCoy, Qiaomei Fu, Joshua M. Akey, Yafei Mao, Lu Chen","doi":"10.1186/s13059-025-03502-z","DOIUrl":null,"url":null,"abstract":"Leveraging long-read sequencing technologies, the first complete human reference genome, T2T-CHM13, corrects assembly errors in previous references and resolves the remaining 8% of the genome. While studies on archaic admixture in modern humans have so far relied on the GRCh37 reference due to the availability of archaic genome data, the impact of T2T-CHM13 in this field remains unexplored. We remap the sequencing reads of the high-quality Altai Neanderthal and Denisovan genomes onto GRCh38 and T2T-CHM13. Compared to GRCh37, we find that T2T-CHM13 significantly improves read mapping quality in archaic samples. We then apply IBDmix to identify Neanderthal-introgressed sequences in 2504 individuals from 26 geographically diverse populations using different reference genomes. We observe that commonly used pre-phasing filtering strategies in public datasets substantially influence archaic ancestry determination, underscoring the need for careful filter selection. Our analysis identifies approximately 51 Mb of Neanderthal sequences unique to T2T-CHM13, predominantly in genomic regions where GRCh38 and T2T-CHM13 assemblies diverge. Additionally, we uncover novel instances of population-specific archaic introgression in diverse populations, spanning genes involved in metabolism, olfaction, and ion-channel function. Finally, to facilitate the exploration of archaic alleles and adaptive signals in human genomics and evolutionary research, we integrate these introgressed sequences and adaptive signals across all reference genomes into a visualization database, ASH ( www.arcseqhub.com ). Our study enhances the detection of archaic variations in modern humans, highlights the importance of utilizing the T2T-CHM13 reference, and provides novel insights into the functional consequences of archaic hominin admixture.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"6 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03502-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Leveraging long-read sequencing technologies, the first complete human reference genome, T2T-CHM13, corrects assembly errors in previous references and resolves the remaining 8% of the genome. While studies on archaic admixture in modern humans have so far relied on the GRCh37 reference due to the availability of archaic genome data, the impact of T2T-CHM13 in this field remains unexplored. We remap the sequencing reads of the high-quality Altai Neanderthal and Denisovan genomes onto GRCh38 and T2T-CHM13. Compared to GRCh37, we find that T2T-CHM13 significantly improves read mapping quality in archaic samples. We then apply IBDmix to identify Neanderthal-introgressed sequences in 2504 individuals from 26 geographically diverse populations using different reference genomes. We observe that commonly used pre-phasing filtering strategies in public datasets substantially influence archaic ancestry determination, underscoring the need for careful filter selection. Our analysis identifies approximately 51 Mb of Neanderthal sequences unique to T2T-CHM13, predominantly in genomic regions where GRCh38 and T2T-CHM13 assemblies diverge. Additionally, we uncover novel instances of population-specific archaic introgression in diverse populations, spanning genes involved in metabolism, olfaction, and ion-channel function. Finally, to facilitate the exploration of archaic alleles and adaptive signals in human genomics and evolutionary research, we integrate these introgressed sequences and adaptive signals across all reference genomes into a visualization database, ASH ( www.arcseqhub.com ). Our study enhances the detection of archaic variations in modern humans, highlights the importance of utilizing the T2T-CHM13 reference, and provides novel insights into the functional consequences of archaic hominin admixture.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.