Artificial Intelligence-Based Classification of Renal Oncocytic Neoplasms: Advancing From a 2-Class Model of Renal Oncocytoma and Low-Grade Oncocytic Tumor to a 3-Class Model Including Chromophobe Renal Cell Carcinoma.

Katrina Collins, Shubham Innani, Kingsley Ebare, Mohammed Saad, Stephanie E Siegmund, Sean R Williamson, Fiona Maclean, Andres Matoso, Ankur Sangoi, Michelle S Hirsch, Dibson D Gondim, Andres M Acosta, Bhakti Baheti, Spyridon Bakas, Muhammad T Idrees
{"title":"Artificial Intelligence-Based Classification of Renal Oncocytic Neoplasms: Advancing From a 2-Class Model of Renal Oncocytoma and Low-Grade Oncocytic Tumor to a 3-Class Model Including Chromophobe Renal Cell Carcinoma.","authors":"Katrina Collins, Shubham Innani, Kingsley Ebare, Mohammed Saad, Stephanie E Siegmund, Sean R Williamson, Fiona Maclean, Andres Matoso, Ankur Sangoi, Michelle S Hirsch, Dibson D Gondim, Andres M Acosta, Bhakti Baheti, Spyridon Bakas, Muhammad T Idrees","doi":"10.5858/arpa.2024-0374-OA","DOIUrl":null,"url":null,"abstract":"<p><strong>Context.—: </strong>Distinguishing between renal oncocytic tumors, such as renal oncocytoma (RO), and a subset of tumors with overlapping characteristics, including the recently identified low-grade oncocytic tumor (LOT), can present a diagnostic challenge for pathologists owing to shared histopathologic features.</p><p><strong>Objective.—: </strong>To develop an automatic computational classifier for stratifying whole slide images of biopsy and resection specimens into 2 distinct groups: RO and LOT.</p><p><strong>Design.—: </strong>A total of 269 whole slide images from 125 cases across 6 institutions were collected. A weakly supervised attention-based multiple-instance-learning deep learning (DL) model was trained and initially evaluated through 5-fold cross validation with case-level stratification, followed by validation using an independent holdout data set. Quantitative performance evaluation was based on accuracy and the area under the receiver operating characteristic curve (AUC).</p><p><strong>Results.—: </strong>The developed model data set yielded generalizable performance, with a 5-fold average testing accuracy of 84% (AUC = 0.78), and a closely aligning accuracy of 83% (AUC = 0.92) on the independent holdout data set.</p><p><strong>Conclusions.—: </strong>The proposed artificial intelligence approach contributes toward a comprehensive solution for addressing commonly encountered renal oncocytic neoplasms, encompassing well-established entities like RO along with the challenging \"gray zone\" LOT, thereby proving applicable in clinical practice.</p>","PeriodicalId":93883,"journal":{"name":"Archives of pathology & laboratory medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of pathology & laboratory medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5858/arpa.2024-0374-OA","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Context.—: Distinguishing between renal oncocytic tumors, such as renal oncocytoma (RO), and a subset of tumors with overlapping characteristics, including the recently identified low-grade oncocytic tumor (LOT), can present a diagnostic challenge for pathologists owing to shared histopathologic features.

Objective.—: To develop an automatic computational classifier for stratifying whole slide images of biopsy and resection specimens into 2 distinct groups: RO and LOT.

Design.—: A total of 269 whole slide images from 125 cases across 6 institutions were collected. A weakly supervised attention-based multiple-instance-learning deep learning (DL) model was trained and initially evaluated through 5-fold cross validation with case-level stratification, followed by validation using an independent holdout data set. Quantitative performance evaluation was based on accuracy and the area under the receiver operating characteristic curve (AUC).

Results.—: The developed model data set yielded generalizable performance, with a 5-fold average testing accuracy of 84% (AUC = 0.78), and a closely aligning accuracy of 83% (AUC = 0.92) on the independent holdout data set.

Conclusions.—: The proposed artificial intelligence approach contributes toward a comprehensive solution for addressing commonly encountered renal oncocytic neoplasms, encompassing well-established entities like RO along with the challenging "gray zone" LOT, thereby proving applicable in clinical practice.

基于人工智能的肾嗜酸细胞肿瘤分类:从肾嗜酸细胞瘤和低级别嗜酸细胞瘤的2级模型到包括憎色性肾细胞癌的3级模型
上下文。-:区分肾嗜瘤细胞瘤(如肾嗜瘤细胞瘤(RO))和具有重叠特征的肿瘤子集,包括最近发现的低级别嗜瘤细胞瘤(LOT),对病理学家来说是一个诊断挑战,因为它们具有共同的组织病理特征。-:开发一种自动计算分类器,用于将活检和切除标本的整个切片图像分层为2个不同的组:RO和lot。-:共收集了6所医院125例患者的269张完整的幻灯片图像。我们训练了一个弱监督的基于注意力的多实例学习深度学习(DL)模型,并通过案例水平分层的5倍交叉验证进行了初步评估,随后使用独立的保留数据集进行了验证。定量性能评价是基于准确度和受试者工作特征曲线下面积。-:开发的模型数据集产生了可推广的性能,平均测试精度为84% (AUC = 0.78)的5倍,并且在独立holdout数据集上的紧密校准精度为83% (AUC = 0.92)。-:提出的人工智能方法有助于解决常见的肾嗜瘤细胞肿瘤的综合解决方案,包括像RO这样的成熟实体以及具有挑战性的“灰色地带”LOT,从而证明在临床实践中是适用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信