Imageless optical navigation system is clinically valid for total knee arthroplasty.

IF 1.5 4区 医学 Q3 SURGERY
Computer Assisted Surgery Pub Date : 2025-12-01 Epub Date: 2025-02-16 DOI:10.1080/24699322.2025.2466424
Taylor B Winberg, Sheila Wang, James L Howard
{"title":"Imageless optical navigation system is clinically valid for total knee arthroplasty.","authors":"Taylor B Winberg, Sheila Wang, James L Howard","doi":"10.1080/24699322.2025.2466424","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving optimal implant position and orientation during total knee arthroplasty (TKA) is a pivotal factor in long-term survival. Computer-assisted navigation (CAN) has been recognized as a trusted technology that improves the accuracy and consistency of femoral and tibial bone cuts. Imageless CAN offers advantages over image-based CAN by reducing cost, radiation exposure, and time. The purpose of this study was to evaluate the accuracy of an imageless optical navigation system for TKA in a clinical setting. Forty-two consecutive patients who underwent primary TKA with CAN were retrospectively reviewed. Femoral and tibial component coronal alignment was assessed <i>via</i> post-operative radiographs by two independent reviewers and compared against coronal alignment angles from the CAN. The primary outcome was the mean absolute difference of femoral and tibial varus/valgus angles between radiograph and intra-operative device measurements. Bland-Altman plots were used to assess agreement between the methods and statistically analyze potential systematic bias. The mean absolute differences between navigation-guided cut measurements and post-operative radiographs were 1.16 ± 1.03° and 1.76 ± 1.38° for femoral and tibial alignment respectively. About 88% of coronal measurements were within ±3°, while 99% were within ±5°. Bland-Altman analysis demonstrated a bias between CAN and radiographic measurements with CAN values averaging 0.52° (95% CI: 0.11°-0.93°) less than their paired radiographic measurements. This study demonstrated the ability of an optical imageless navigation system to measure, on average, femoral and tibial coronal cuts to within 2.0° of post-operative radiographic measurements in a clinical setting.</p>","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":"30 1","pages":"2466424"},"PeriodicalIF":1.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2025.2466424","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving optimal implant position and orientation during total knee arthroplasty (TKA) is a pivotal factor in long-term survival. Computer-assisted navigation (CAN) has been recognized as a trusted technology that improves the accuracy and consistency of femoral and tibial bone cuts. Imageless CAN offers advantages over image-based CAN by reducing cost, radiation exposure, and time. The purpose of this study was to evaluate the accuracy of an imageless optical navigation system for TKA in a clinical setting. Forty-two consecutive patients who underwent primary TKA with CAN were retrospectively reviewed. Femoral and tibial component coronal alignment was assessed via post-operative radiographs by two independent reviewers and compared against coronal alignment angles from the CAN. The primary outcome was the mean absolute difference of femoral and tibial varus/valgus angles between radiograph and intra-operative device measurements. Bland-Altman plots were used to assess agreement between the methods and statistically analyze potential systematic bias. The mean absolute differences between navigation-guided cut measurements and post-operative radiographs were 1.16 ± 1.03° and 1.76 ± 1.38° for femoral and tibial alignment respectively. About 88% of coronal measurements were within ±3°, while 99% were within ±5°. Bland-Altman analysis demonstrated a bias between CAN and radiographic measurements with CAN values averaging 0.52° (95% CI: 0.11°-0.93°) less than their paired radiographic measurements. This study demonstrated the ability of an optical imageless navigation system to measure, on average, femoral and tibial coronal cuts to within 2.0° of post-operative radiographic measurements in a clinical setting.

无图像光学导航系统在全膝关节置换术中是有效的。
在全膝关节置换术(TKA)中获得最佳的植入物位置和方向是长期生存的关键因素。计算机辅助导航(CAN)已被认为是一种值得信赖的技术,可以提高股骨和胫骨切割的准确性和一致性。与基于图像的CAN相比,无图像CAN具有降低成本、辐射暴露和时间的优势。本研究的目的是评估无图像光学导航系统在临床TKA中的准确性。回顾性分析了42例连续接受原发性TKA合并CAN的患者。由两名独立评论者通过术后x线片评估股骨和胫骨组件冠状位对齐,并与CAN的冠状位对齐角度进行比较。主要结果是x线片和术中装置测量的股骨和胫骨内翻/外翻角的平均绝对差异。Bland-Altman图用于评估方法之间的一致性,并统计分析潜在的系统偏倚。导航引导下的切口测量值与术后x线片的绝对平均差分别为1.16±1.03°和1.76±1.38°。约88%的日冕测量值在±3°范围内,99%的日冕测量值在±5°范围内。Bland-Altman分析表明,CAN值与x射线测量值之间存在偏差,CAN值平均比配对的x射线测量值小0.52°(95% CI: 0.11°-0.93°)。该研究证明了光学无图像导航系统在临床环境中平均测量股骨和胫骨冠状切口的能力,其术后放射测量误差在2.0°以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Assisted Surgery
Computer Assisted Surgery Medicine-Surgery
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
10 weeks
期刊介绍: omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties. The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信