Human versus artificial intelligence: evaluating ChatGPT's performance in conducting published systematic reviews with meta-analysis in chronic pain research.
Anam Purewal, Kalli Fautsch, Johana Klasova, Nasir Hussain, Ryan S D'Souza
{"title":"Human versus artificial intelligence: evaluating ChatGPT's performance in conducting published systematic reviews with meta-analysis in chronic pain research.","authors":"Anam Purewal, Kalli Fautsch, Johana Klasova, Nasir Hussain, Ryan S D'Souza","doi":"10.1136/rapm-2024-106358","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Artificial intelligence (AI), particularly large-language models like Chat Generative Pre-Trained Transformer (ChatGPT), has demonstrated potential in streamlining research methodologies. Systematic reviews and meta-analyses, often considered the pinnacle of evidence-based medicine, are inherently time-intensive and demand meticulous planning, rigorous data extraction, thorough analysis, and careful synthesis. Despite promising applications of AI, its utility in conducting systematic reviews with meta-analysis remains unclear. This study evaluated ChatGPT's accuracy in conducting key tasks of a systematic review with meta-analysis.</p><p><strong>Methods: </strong>This validation study used data from a published meta-analysis on emotional functioning after spinal cord stimulation. ChatGPT-4o performed title/abstract screening, full-text study selection, and data pooling for this systematic review with meta-analysis. Comparisons were made against human-executed steps, which were considered the gold standard. Outcomes of interest included accuracy, sensitivity, specificity, positive predictive value, and negative predictive value for screening and full-text review tasks. We also assessed for discrepancies in pooled effect estimates and forest plot generation.</p><p><strong>Results: </strong>For title and abstract screening, ChatGPT achieved an accuracy of 70.4%, sensitivity of 54.9%, and specificity of 80.1%. In the full-text screening phase, accuracy was 68.4%, sensitivity 75.6%, and specificity 66.8%. ChatGPT successfully pooled data for five forest plots, achieving 100% accuracy in calculating pooled mean differences, 95% CIs, and heterogeneity estimates (<i>I<sup>2</sup></i> score and tau-squared values) for most outcomes, with minor discrepancies in tau-squared values (range 0.01-0.05). Forest plots showed no significant discrepancies.</p><p><strong>Conclusion: </strong>ChatGPT demonstrates modest to moderate accuracy in screening and study selection tasks, but performs well in data pooling and meta-analytic calculations. These findings underscore the potential of AI to augment systematic review methodologies, while also emphasizing the need for human oversight to ensure accuracy and integrity in research workflows.</p>","PeriodicalId":54503,"journal":{"name":"Regional Anesthesia and Pain Medicine","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regional Anesthesia and Pain Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/rapm-2024-106358","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Artificial intelligence (AI), particularly large-language models like Chat Generative Pre-Trained Transformer (ChatGPT), has demonstrated potential in streamlining research methodologies. Systematic reviews and meta-analyses, often considered the pinnacle of evidence-based medicine, are inherently time-intensive and demand meticulous planning, rigorous data extraction, thorough analysis, and careful synthesis. Despite promising applications of AI, its utility in conducting systematic reviews with meta-analysis remains unclear. This study evaluated ChatGPT's accuracy in conducting key tasks of a systematic review with meta-analysis.
Methods: This validation study used data from a published meta-analysis on emotional functioning after spinal cord stimulation. ChatGPT-4o performed title/abstract screening, full-text study selection, and data pooling for this systematic review with meta-analysis. Comparisons were made against human-executed steps, which were considered the gold standard. Outcomes of interest included accuracy, sensitivity, specificity, positive predictive value, and negative predictive value for screening and full-text review tasks. We also assessed for discrepancies in pooled effect estimates and forest plot generation.
Results: For title and abstract screening, ChatGPT achieved an accuracy of 70.4%, sensitivity of 54.9%, and specificity of 80.1%. In the full-text screening phase, accuracy was 68.4%, sensitivity 75.6%, and specificity 66.8%. ChatGPT successfully pooled data for five forest plots, achieving 100% accuracy in calculating pooled mean differences, 95% CIs, and heterogeneity estimates (I2 score and tau-squared values) for most outcomes, with minor discrepancies in tau-squared values (range 0.01-0.05). Forest plots showed no significant discrepancies.
Conclusion: ChatGPT demonstrates modest to moderate accuracy in screening and study selection tasks, but performs well in data pooling and meta-analytic calculations. These findings underscore the potential of AI to augment systematic review methodologies, while also emphasizing the need for human oversight to ensure accuracy and integrity in research workflows.
期刊介绍:
Regional Anesthesia & Pain Medicine, the official publication of the American Society of Regional Anesthesia and Pain Medicine (ASRA), is a monthly journal that publishes peer-reviewed scientific and clinical studies to advance the understanding and clinical application of regional techniques for surgical anesthesia and postoperative analgesia. Coverage includes intraoperative regional techniques, perioperative pain, chronic pain, obstetric anesthesia, pediatric anesthesia, outcome studies, and complications.
Published for over thirty years, this respected journal also serves as the official publication of the European Society of Regional Anaesthesia and Pain Therapy (ESRA), the Asian and Oceanic Society of Regional Anesthesia (AOSRA), the Latin American Society of Regional Anesthesia (LASRA), the African Society for Regional Anesthesia (AFSRA), and the Academy of Regional Anaesthesia of India (AORA).