A model for predicting factors affecting health information avoidance on WeChat.

IF 2.9 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
DIGITAL HEALTH Pub Date : 2025-02-13 eCollection Date: 2025-01-01 DOI:10.1177/20552076251314277
Minghong Chen, Xiumei Huang, Yinger Wu, Shijie Song, Xianjun Qi
{"title":"A model for predicting factors affecting health information avoidance on WeChat.","authors":"Minghong Chen, Xiumei Huang, Yinger Wu, Shijie Song, Xianjun Qi","doi":"10.1177/20552076251314277","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>WeChat serves as a crucial source of health information, distinguished by its highly personalized nature. Avoidance of such personalized health information has a direct impact on individuals' health decision-making. This study aims to identify the factors influencing personalized health information avoidance on WeChat and to construct a hierarchical framework illustrating the relationships among these factors.</p><p><strong>Methods: </strong>A hybrid method was utilized. Semi-structured interviews and grounded theory were used to identify the influencing factors. The interpretive structural modeling (ISM) method was adopted to develop a hierarchical model of the identified factors, followed by matrice d'impacts croises-multiplication appliqué a un classemen (MICMAC) to analyze the dependence and driving power of each factor.</p><p><strong>Results: </strong>The 20 predictors of personalized health information avoidance were broadly categorized into three groups: personal, informational, and social factors. These factors collectively form a three-tier explanatory framework, consisting of the top, middle and bottom layers. At the root layer, health characteristics and cognition exerted a strong driving force, while negative emotions and affective factors at the top layer showed a high degree of dependence. In contrast, the decision-making cognition, informational factors, and social factors in the middle layer exhibited relatively weaker driving force and dependence power.</p><p><strong>Conclusion: </strong>This study bridged the research gap of information avoidance by providing new insights targeting the factors influencing personalized health information avoidance behavior on WeChat. It also contributed to enhancing personal health information management and the health information services provided on WeChat.</p>","PeriodicalId":51333,"journal":{"name":"DIGITAL HEALTH","volume":"11 ","pages":"20552076251314277"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826881/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DIGITAL HEALTH","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20552076251314277","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: WeChat serves as a crucial source of health information, distinguished by its highly personalized nature. Avoidance of such personalized health information has a direct impact on individuals' health decision-making. This study aims to identify the factors influencing personalized health information avoidance on WeChat and to construct a hierarchical framework illustrating the relationships among these factors.

Methods: A hybrid method was utilized. Semi-structured interviews and grounded theory were used to identify the influencing factors. The interpretive structural modeling (ISM) method was adopted to develop a hierarchical model of the identified factors, followed by matrice d'impacts croises-multiplication appliqué a un classemen (MICMAC) to analyze the dependence and driving power of each factor.

Results: The 20 predictors of personalized health information avoidance were broadly categorized into three groups: personal, informational, and social factors. These factors collectively form a three-tier explanatory framework, consisting of the top, middle and bottom layers. At the root layer, health characteristics and cognition exerted a strong driving force, while negative emotions and affective factors at the top layer showed a high degree of dependence. In contrast, the decision-making cognition, informational factors, and social factors in the middle layer exhibited relatively weaker driving force and dependence power.

Conclusion: This study bridged the research gap of information avoidance by providing new insights targeting the factors influencing personalized health information avoidance behavior on WeChat. It also contributed to enhancing personal health information management and the health information services provided on WeChat.

求助全文
约1分钟内获得全文 求助全文
来源期刊
DIGITAL HEALTH
DIGITAL HEALTH Multiple-
CiteScore
2.90
自引率
7.70%
发文量
302
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信