Dynamic Prediction of the Risk of Hepatocellular Carcinoma After DAA Treatment for Hepatitis C Patients.

IF 2.5 4区 医学 Q3 ONCOLOGY
Xinyan Ma, Lili Huang, Meijie Yu, Rui Dong, Yifan Wang, Hongbo Chen, Rongbin Yu, Peng Huang, Jie Wang
{"title":"Dynamic Prediction of the Risk of Hepatocellular Carcinoma After DAA Treatment for Hepatitis C Patients.","authors":"Xinyan Ma, Lili Huang, Meijie Yu, Rui Dong, Yifan Wang, Hongbo Chen, Rongbin Yu, Peng Huang, Jie Wang","doi":"10.1177/10732748251316609","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to develop and internally validate a hepatocellular carcinoma (HCC) risk prediction model incorporating repeated-measures data (longitudinal model), and compare with baseline predictions.</p><p><strong>Methods: </strong>A total of 1097 participants with chronic hepatitis C after direct-acting antivirals (DAA) treatment were included in this prospective cohort study. The framework of joint models for longitudinal and survival data was used to construct the longitudinal prediction model. For comparison, a baseline model incorporating the same predictors was constructed through the multivariate Cox regression models. Model performance was evaluated using dynamic discrimination index (DDI), areas under the receiver-operating characteristics curves (AUROC), and Brier scores.</p><p><strong>Results: </strong>Over a median follow-up of 7.25 years, 60 patients (5.5%) developed HCC. Key risk factors identified were aspartate aminotransferase (AST), cholinesterase, gamma-glutamyl transferase (GGT), albumin, hemoglobin (Hb), platelet count, alpha-fetoprotein (AFP), antigen-125 (CA-125), and carcinoembryonic antigen (CEA). The final joint model, with GGT and CEA removed, showed superior average predictive performance (DDI = .871) compared to models with all predictors included. Validation showed high predictive accuracy for HCC, with AUROCs above .9 for 1-, 3-, 4-, and 5-year predictions. In comparison, the baseline Cox model only achieved mediocre AUROCs of .7 (.75, .67, .69, and .67, respectively).</p><p><strong>Conclusion: </strong>Compared to static models, our dynamic prediction model can predict the risk of HCC in patients after DAA treatment more accurately, providing better information to distinguish high-risk populations.</p>","PeriodicalId":49093,"journal":{"name":"Cancer Control","volume":"32 ","pages":"10732748251316609"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831632/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10732748251316609","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The aim of this study was to develop and internally validate a hepatocellular carcinoma (HCC) risk prediction model incorporating repeated-measures data (longitudinal model), and compare with baseline predictions.

Methods: A total of 1097 participants with chronic hepatitis C after direct-acting antivirals (DAA) treatment were included in this prospective cohort study. The framework of joint models for longitudinal and survival data was used to construct the longitudinal prediction model. For comparison, a baseline model incorporating the same predictors was constructed through the multivariate Cox regression models. Model performance was evaluated using dynamic discrimination index (DDI), areas under the receiver-operating characteristics curves (AUROC), and Brier scores.

Results: Over a median follow-up of 7.25 years, 60 patients (5.5%) developed HCC. Key risk factors identified were aspartate aminotransferase (AST), cholinesterase, gamma-glutamyl transferase (GGT), albumin, hemoglobin (Hb), platelet count, alpha-fetoprotein (AFP), antigen-125 (CA-125), and carcinoembryonic antigen (CEA). The final joint model, with GGT and CEA removed, showed superior average predictive performance (DDI = .871) compared to models with all predictors included. Validation showed high predictive accuracy for HCC, with AUROCs above .9 for 1-, 3-, 4-, and 5-year predictions. In comparison, the baseline Cox model only achieved mediocre AUROCs of .7 (.75, .67, .69, and .67, respectively).

Conclusion: Compared to static models, our dynamic prediction model can predict the risk of HCC in patients after DAA treatment more accurately, providing better information to distinguish high-risk populations.

丙型肝炎患者DAA治疗后肝癌发生风险的动态预测。
目的:本研究的目的是建立并内部验证一个包含重复测量数据(纵向模型)的肝细胞癌(HCC)风险预测模型,并与基线预测进行比较。方法:1097名接受直接作用抗病毒药物(DAA)治疗的慢性丙型肝炎患者被纳入这项前瞻性队列研究。采用纵向和生存数据联合模型框架构建纵向预测模型。为了进行比较,通过多变量Cox回归模型构建了包含相同预测因子的基线模型。采用动态判别指数(DDI)、接受者-操作特征曲线下面积(AUROC)和Brier评分对模型性能进行评价。结果:在中位随访7.25年期间,60例患者(5.5%)发生HCC。确定的关键危险因素是天冬氨酸转氨酶(AST)、胆碱酯酶、γ -谷氨酰转移酶(GGT)、白蛋白、血红蛋白(Hb)、血小板计数、甲胎蛋白(AFP)、抗原125 (CA-125)和癌胚抗原(CEA)。与包含所有预测因子的模型相比,去除GGT和CEA的最终联合模型显示出更好的平均预测性能(DDI = 0.871)。验证显示HCC的预测准确性很高,1年、3年、4年和5年预测的auroc均高于0.9。相比之下,基线Cox模型的auroc仅为0.7。分别为0.75、0.67、0.69和0.67)。结论:与静态模型相比,我们的动态预测模型可以更准确地预测DAA治疗后患者发生HCC的风险,为区分高危人群提供更好的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Control
Cancer Control ONCOLOGY-
CiteScore
3.80
自引率
0.00%
发文量
148
审稿时长
>12 weeks
期刊介绍: Cancer Control is a JCR-ranked, peer-reviewed open access journal whose mission is to advance the prevention, detection, diagnosis, treatment, and palliative care of cancer by enabling researchers, doctors, policymakers, and other healthcare professionals to freely share research along the cancer control continuum. Our vision is a world where gold-standard cancer care is the norm, not the exception.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信