Dapagliflozin exerts anti-apoptotic effects by mitigating macrophage polarization via modulation of the phosphoinositide 3-kinase/protein kinase B signaling pathway.
Sheng-Xi Xiong, Lin-Juan Huang, Han-Shuang Liu, Xiao-Xiao Zhang, Min Li, Yu-Bing Cui, Chen Shao, Xiao-Lei Hu
{"title":"Dapagliflozin exerts anti-apoptotic effects by mitigating macrophage polarization <i>via</i> modulation of the phosphoinositide 3-kinase/protein kinase B signaling pathway.","authors":"Sheng-Xi Xiong, Lin-Juan Huang, Han-Shuang Liu, Xiao-Xiao Zhang, Min Li, Yu-Bing Cui, Chen Shao, Xiao-Lei Hu","doi":"10.4239/wjd.v16.i2.97287","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Macrophages are central to the orchestration of immune responses, inflammatory processes, and the pathogenesis of diabetic complications. The dynamic polarization of macrophages into M1 and M2 phenotypes critically modulates inflammation and contributes to the progression of diabetic nephropathy. Sodium-glucose cotransporter 2 inhibitors such as dapagliflozin, which are acclaimed for their efficacy in diabetes management, may influence macrophage polarization, thereby ameliorating diabetic nephropathy. This investigation delves into these mechanistic pathways, aiming to elucidate novel therapeutic strategies for diabetes.</p><p><strong>Aim: </strong>To investigate the inhibitory effect of dapagliflozin on macrophage M1 polarization and apoptosis and to explore its mechanism of action.</p><p><strong>Methods: </strong>We established a murine model of type 2 diabetes mellitus and harvested peritoneal macrophages following treatment with dapagliflozin. Concurrently, the human monocyte cell line cells were used for <i>in vitro</i> studies. Macrophage viability was assessed in a cell counting kit 8 assay, whereas apoptosis was evaluated by Annexin V/propidium iodide staining. Protein expression was examined through western blotting, and the expression levels of macrophage M1 surface markers, inflammatory cytokines, and apoptotic factors were quantified using flow cytometry, enzyme linked immunosorbent assay, and quantitative real-time polymerase chain reaction analyses.</p><p><strong>Results: </strong>Dapagliflozin attenuated M1 macrophage polarization and mitigated apoptosis in the abdominal macrophages of diabetic mice, evidenced by the downregulation of proapoptotic genes (<i>Caspase 3</i>), inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor-α, and IL-1β], and M1 surface markers (inducible nitric oxide synthase, and cluster of differentiation 86), as well as the upregulation of the antiapoptotic gene <i>BCL2</i>. Moreover, dapagliflozin suppressed the expression of proteins associated with the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway (PI3K, AKT, phosphorylated protein kinase B). These observations were corroborated <i>in vitro</i>, where we found that the modulatory effects of dapagliflozin were abrogated by 740Y-P, an activator of the PI3K/AKT signaling pathway.</p><p><strong>Conclusion: </strong>Dapagliflozin attenuates the polarization of macrophages toward the M1 phenotype, thereby mitigating inflammation and promoting macrophage apoptosis. These effects are likely mediated through the inhibition of the PI3K/AKT signaling pathway.</p>","PeriodicalId":48607,"journal":{"name":"World Journal of Diabetes","volume":"16 2","pages":"97287"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4239/wjd.v16.i2.97287","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Macrophages are central to the orchestration of immune responses, inflammatory processes, and the pathogenesis of diabetic complications. The dynamic polarization of macrophages into M1 and M2 phenotypes critically modulates inflammation and contributes to the progression of diabetic nephropathy. Sodium-glucose cotransporter 2 inhibitors such as dapagliflozin, which are acclaimed for their efficacy in diabetes management, may influence macrophage polarization, thereby ameliorating diabetic nephropathy. This investigation delves into these mechanistic pathways, aiming to elucidate novel therapeutic strategies for diabetes.
Aim: To investigate the inhibitory effect of dapagliflozin on macrophage M1 polarization and apoptosis and to explore its mechanism of action.
Methods: We established a murine model of type 2 diabetes mellitus and harvested peritoneal macrophages following treatment with dapagliflozin. Concurrently, the human monocyte cell line cells were used for in vitro studies. Macrophage viability was assessed in a cell counting kit 8 assay, whereas apoptosis was evaluated by Annexin V/propidium iodide staining. Protein expression was examined through western blotting, and the expression levels of macrophage M1 surface markers, inflammatory cytokines, and apoptotic factors were quantified using flow cytometry, enzyme linked immunosorbent assay, and quantitative real-time polymerase chain reaction analyses.
Results: Dapagliflozin attenuated M1 macrophage polarization and mitigated apoptosis in the abdominal macrophages of diabetic mice, evidenced by the downregulation of proapoptotic genes (Caspase 3), inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor-α, and IL-1β], and M1 surface markers (inducible nitric oxide synthase, and cluster of differentiation 86), as well as the upregulation of the antiapoptotic gene BCL2. Moreover, dapagliflozin suppressed the expression of proteins associated with the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway (PI3K, AKT, phosphorylated protein kinase B). These observations were corroborated in vitro, where we found that the modulatory effects of dapagliflozin were abrogated by 740Y-P, an activator of the PI3K/AKT signaling pathway.
Conclusion: Dapagliflozin attenuates the polarization of macrophages toward the M1 phenotype, thereby mitigating inflammation and promoting macrophage apoptosis. These effects are likely mediated through the inhibition of the PI3K/AKT signaling pathway.
期刊介绍:
The WJD is a high-quality, peer reviewed, open-access journal. The primary task of WJD is to rapidly publish high-quality original articles, reviews, editorials, and case reports in the field of diabetes. In order to promote productive academic communication, the peer review process for the WJD is transparent; to this end, all published manuscripts are accompanied by the anonymized reviewers’ comments as well as the authors’ responses. The primary aims of the WJD are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in diabetes. Scope: Diabetes Complications, Experimental Diabetes Mellitus, Type 1 Diabetes Mellitus, Type 2 Diabetes Mellitus, Diabetes, Gestational, Diabetic Angiopathies, Diabetic Cardiomyopathies, Diabetic Coma, Diabetic Ketoacidosis, Diabetic Nephropathies, Diabetic Neuropathies, Donohue Syndrome, Fetal Macrosomia, and Prediabetic State.