{"title":"β-Hydroxybutyrate Facilitates Postinfarction Cardiac Repair via Targeting PHD2.","authors":"Cheng Wang, Wenjing Xu, Shushu Jiang, Yichen Wu, Jiangchen Shu, Xinyuan Gao, Kai Huang","doi":"10.1161/CIRCRESAHA.124.325179","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute myocardial infarction (MI) remains one of the major causes of death worldwide, and innovative treatment strategies for MI represent a major challenge in cardiovascular medicine. Caloric restriction (CR) is the most potent nonpharmacological intervention known to prevent age-related disorders and extend lifespan. CR reduces glycolysis and elevates ketone body metabolism. However, whether and how CR or ketone body prevents the progression of MI remains poorly defined.</p><p><strong>Methods: </strong>Mice treated with CR and β-hydroxybutyrate (β-OHB) underwent MI induced by ligation of the left anterior descending coronary artery. Cardiac function was assessed by echocardiographic measurements. Histological analysis, fluorescence-activated cell sorting, and immunofluorescence were used to assess myocardial neovascularization and macrophage filtration. The interaction and modification of β-OHB on PHD2 were analyzed by molecular docking, cellular thermal shift assay, liquid chromatography with tandem mass spectrometry, and coimmunoprecipitation. Macrophage-specific PHD2 K239R and K385R knock-in mice were used to determine the functional significance of β-OHB/PHD2 axis in vivo.</p><p><strong>Results: </strong>Twelve weeks of CR markedly rescued postinfarction cardiac function by enhancing neovascularization. CR significantly increased circulating and cardiac ketone bodies, including β-OHB and acetoacetate. We identified β-OHB but not acetoacetate selectively targeted macrophages to stimulate VEGF (vascular endothelial growth factor) production in the peri-infarct area to promote neovascularization and cardiac repair. Mechanistically, β-OHB binds to and induces lysine β-hydroxybutyrylation of PHD2 at lysines 239 and 385, thus blocking its function in the hydroxylation of HIF-1α (hypoxia-inducible factor 1α) and resulting in enhanced HIF1α-dependent VEGF transcription and secretion. More importantly, specific PHD2 lys239 and lys385 mutations in macrophages abolished the preventive effects of exogenous β-OHB on MI in mice.</p><p><strong>Conclusions: </strong>These data reveal a novel regulation of lysine β-hydroxybutyrylation on PHD2 and demonstrate a promising and therapeutic role for β-OHB/PHD2 in effectively accelerating neovascularization and preserving heart function after cardiac ischemia.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325179","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Acute myocardial infarction (MI) remains one of the major causes of death worldwide, and innovative treatment strategies for MI represent a major challenge in cardiovascular medicine. Caloric restriction (CR) is the most potent nonpharmacological intervention known to prevent age-related disorders and extend lifespan. CR reduces glycolysis and elevates ketone body metabolism. However, whether and how CR or ketone body prevents the progression of MI remains poorly defined.
Methods: Mice treated with CR and β-hydroxybutyrate (β-OHB) underwent MI induced by ligation of the left anterior descending coronary artery. Cardiac function was assessed by echocardiographic measurements. Histological analysis, fluorescence-activated cell sorting, and immunofluorescence were used to assess myocardial neovascularization and macrophage filtration. The interaction and modification of β-OHB on PHD2 were analyzed by molecular docking, cellular thermal shift assay, liquid chromatography with tandem mass spectrometry, and coimmunoprecipitation. Macrophage-specific PHD2 K239R and K385R knock-in mice were used to determine the functional significance of β-OHB/PHD2 axis in vivo.
Results: Twelve weeks of CR markedly rescued postinfarction cardiac function by enhancing neovascularization. CR significantly increased circulating and cardiac ketone bodies, including β-OHB and acetoacetate. We identified β-OHB but not acetoacetate selectively targeted macrophages to stimulate VEGF (vascular endothelial growth factor) production in the peri-infarct area to promote neovascularization and cardiac repair. Mechanistically, β-OHB binds to and induces lysine β-hydroxybutyrylation of PHD2 at lysines 239 and 385, thus blocking its function in the hydroxylation of HIF-1α (hypoxia-inducible factor 1α) and resulting in enhanced HIF1α-dependent VEGF transcription and secretion. More importantly, specific PHD2 lys239 and lys385 mutations in macrophages abolished the preventive effects of exogenous β-OHB on MI in mice.
Conclusions: These data reveal a novel regulation of lysine β-hydroxybutyrylation on PHD2 and demonstrate a promising and therapeutic role for β-OHB/PHD2 in effectively accelerating neovascularization and preserving heart function after cardiac ischemia.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.