Louk T Timmer, Elvira den Hertog, Danielle Versteeg, Harm Post, Job A J Verdonschot, Jantine Monshouwer-Kloots, Eirini Kyriakopoulou, Ilaria Perini, Tim Koopmans, Petra van der Kraak, Lorena Zentilin, Stephane R B Heymans, Aryan Vink, Mauro Giacca, Albert J R Heck, Eva van Rooij
{"title":"Cardiomyocyte SORBS2 expression increases in heart failure and regulates integrin interactions and extracellular matrix composition.","authors":"Louk T Timmer, Elvira den Hertog, Danielle Versteeg, Harm Post, Job A J Verdonschot, Jantine Monshouwer-Kloots, Eirini Kyriakopoulou, Ilaria Perini, Tim Koopmans, Petra van der Kraak, Lorena Zentilin, Stephane R B Heymans, Aryan Vink, Mauro Giacca, Albert J R Heck, Eva van Rooij","doi":"10.1093/cvr/cvaf021","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>In this study, we aimed to uncover genes associated with stressed cardiomyocytes by combining single-cell transcriptomic datasets from failing cardiac tissue from both humans and mice.</p><p><strong>Methods and results: </strong>Our bioinformatic analysis identified SORBS2 as conserved NPPA correlated gene. Using mouse models and cardiac tissue from human heart failure patients, we demonstrated that SORBS2 expression is consistently increased during pathological remodeling, correlates to disease severity and is regulated by GATA4. By affinity-purification mass-spectrometry, we showed SORBS2 to interact with the integrin-cytoskeleton connections. Cardiomyocyte-specific genetic loss of Sorbs2 in adult mice changed integrin interactions, indicated by the increased expression of several integrins and altered extracellular matrix components connecting to these integrins, leading to an exacerbated fibrotic response during pathological remodeling.</p><p><strong>Conclusions: </strong>Sorbs2 is a cardiomyocyte-enriched gene that is increased during progression to heart failure in a GATA4-dependent manner and correlates to phenotypical hallmarks of cardiac failure.Our data indicate SORBS2 to function as a crucial regulator of integrin interactions and cardiac fibrosis.</p>","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvaf021","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: In this study, we aimed to uncover genes associated with stressed cardiomyocytes by combining single-cell transcriptomic datasets from failing cardiac tissue from both humans and mice.
Methods and results: Our bioinformatic analysis identified SORBS2 as conserved NPPA correlated gene. Using mouse models and cardiac tissue from human heart failure patients, we demonstrated that SORBS2 expression is consistently increased during pathological remodeling, correlates to disease severity and is regulated by GATA4. By affinity-purification mass-spectrometry, we showed SORBS2 to interact with the integrin-cytoskeleton connections. Cardiomyocyte-specific genetic loss of Sorbs2 in adult mice changed integrin interactions, indicated by the increased expression of several integrins and altered extracellular matrix components connecting to these integrins, leading to an exacerbated fibrotic response during pathological remodeling.
Conclusions: Sorbs2 is a cardiomyocyte-enriched gene that is increased during progression to heart failure in a GATA4-dependent manner and correlates to phenotypical hallmarks of cardiac failure.Our data indicate SORBS2 to function as a crucial regulator of integrin interactions and cardiac fibrosis.
期刊介绍:
Cardiovascular Research
Journal Overview:
International journal of the European Society of Cardiology
Focuses on basic and translational research in cardiology and cardiovascular biology
Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects
Submission Criteria:
Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels
Accepts clinical proof-of-concept and translational studies
Manuscripts expected to provide significant contribution to cardiovascular biology and diseases