DSP-1, the major fibronectin type-II protein of donkey seminal plasma is a small heat-shock protein and exhibits chaperone-like activity against thermal and oxidative stress
Sk Alim , Sudheer K. Cheppali , Sonali S. Pawar, Musti J. Swamy
{"title":"DSP-1, the major fibronectin type-II protein of donkey seminal plasma is a small heat-shock protein and exhibits chaperone-like activity against thermal and oxidative stress","authors":"Sk Alim , Sudheer K. Cheppali , Sonali S. Pawar, Musti J. Swamy","doi":"10.1016/j.bbapap.2025.141064","DOIUrl":null,"url":null,"abstract":"<div><div>Fibronectin type-II (FnII) proteins are major constituents in the seminal plasma of many mammals and play a crucial role in sperm capacitation. Additionally, the seminal FnII proteins from bull and horse exhibit chaperone-like activity (CLA), by acting as small heat shock proteins (<em>shsp</em>s). The present work demonstrates that the major FnII protein of donkey seminal plasma, DSP-1 exhibits CLA with broad specificity and protects various client proteins such as alcohol dehydrogenase, lactate dehydrogenase and enolase against thermal and oxidative stress. Binding of phosphorylcholine (PrC) – the head group moiety of choline phospholipids, which are the physiological ligands of DSP-1 – decreased the CLA whereas binding of 1,2-dioleoyl-<em>sn</em>-glycero-3-phospholcholine (DOPC) increased the CLA. Biophysical studies suggested that these contrasting effects on the CLA by phosphorylcholine and diacyl phosphatidylcholine could be attributed to changes in the surface hydrophobicity of DSP-1 upon binding to these ligands. Interestingly, binding of PrC reduced DSP-1 tetramers to monomers with lower surface hydrophobicity, whereas binding to DOPC liposomes increased its surface hydrophobicity. These results, which demonstrate that DSP-1 exhibits CLA and functions as a molecular chaperone, expand the family of mammalian seminal FnII proteins that function as <em>shsp</em>s.</div></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1873 3","pages":"Article 141064"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963925000020","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fibronectin type-II (FnII) proteins are major constituents in the seminal plasma of many mammals and play a crucial role in sperm capacitation. Additionally, the seminal FnII proteins from bull and horse exhibit chaperone-like activity (CLA), by acting as small heat shock proteins (shsps). The present work demonstrates that the major FnII protein of donkey seminal plasma, DSP-1 exhibits CLA with broad specificity and protects various client proteins such as alcohol dehydrogenase, lactate dehydrogenase and enolase against thermal and oxidative stress. Binding of phosphorylcholine (PrC) – the head group moiety of choline phospholipids, which are the physiological ligands of DSP-1 – decreased the CLA whereas binding of 1,2-dioleoyl-sn-glycero-3-phospholcholine (DOPC) increased the CLA. Biophysical studies suggested that these contrasting effects on the CLA by phosphorylcholine and diacyl phosphatidylcholine could be attributed to changes in the surface hydrophobicity of DSP-1 upon binding to these ligands. Interestingly, binding of PrC reduced DSP-1 tetramers to monomers with lower surface hydrophobicity, whereas binding to DOPC liposomes increased its surface hydrophobicity. These results, which demonstrate that DSP-1 exhibits CLA and functions as a molecular chaperone, expand the family of mammalian seminal FnII proteins that function as shsps.
期刊介绍:
BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.