{"title":"Structural Evolution of Microgels During Precipitation Polymerization Revealed by Light Scattering and Electrophoresis","authors":"Yuji Sato, Ryuji Namioka, Yuichiro Nishizawa, Daisuke Suzuki","doi":"10.1002/mren.202400024","DOIUrl":null,"url":null,"abstract":"<p>While precipitation polymerization allows the synthesis of microgels with controlled functional-group distributions, the structural development of these microgels during the polymerization process still remains unclear. In this study, microgels with different reactivity ratios between the monomer and charged co-monomer are prepared by precipitation polymerization, and the evolution of their size, thermoresponsive behavior, and surface properties during polymerization are evaluated. In particular, the surface properties of the microgels are analyzed quantitatively using the softness parameter and the surface charge density is calculated using Ohshima's equation. The results allowed describing the structural changes of microgels during precipitation polymerization well and provided design guidelines for functional microgels with controlled functional group distributions.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"19 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mren.202400024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202400024","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
While precipitation polymerization allows the synthesis of microgels with controlled functional-group distributions, the structural development of these microgels during the polymerization process still remains unclear. In this study, microgels with different reactivity ratios between the monomer and charged co-monomer are prepared by precipitation polymerization, and the evolution of their size, thermoresponsive behavior, and surface properties during polymerization are evaluated. In particular, the surface properties of the microgels are analyzed quantitatively using the softness parameter and the surface charge density is calculated using Ohshima's equation. The results allowed describing the structural changes of microgels during precipitation polymerization well and provided design guidelines for functional microgels with controlled functional group distributions.
期刊介绍:
Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.