Hollows on Mercury: Global Classification of Degradation States and Insight Into Hollow Evolution

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Ariel N. Deutsch, Valentin T. Bickel, David T. Blewett
{"title":"Hollows on Mercury: Global Classification of Degradation States and Insight Into Hollow Evolution","authors":"Ariel N. Deutsch,&nbsp;Valentin T. Bickel,&nbsp;David T. Blewett","doi":"10.1029/2024JE008747","DOIUrl":null,"url":null,"abstract":"<p>Hollows are small, shallow, irregularly shaped landforms, widespread across Mercury, interpreted to have formed via loss of volatiles. Here, we present the first global analysis of hollow degradation states using a new machine learning-derived global catalog. We define three classes, grading from younger/potentially active “Stage 1” (sharp morphology, high visible reflectance) to older/potentially expired “Stage 3” (softened morphology, reflectance similar to that of surroundings). Most analyzed hollows are Stage 1 (<i>N</i> = 1,545 individual hollows), which are more common than Stage 2 (<i>N</i> = 1,111) or Stage 3 (<i>N</i> = 10) hollows near the equator, consistent with the idea that insolation is a primary driver for hollow initiation/growth. Areas where Stage 2 hollows are more common than Stage 1 hollows may indicate regions of relative volatile depletion. Stage 3 hollows are rare, suggesting they are systematically missed during image review, or that hollows on Mercury are mostly young, have been recently reactivated, or are quickly erased once they become inactive. Temperature may limit hollow growth, given that only small hollows are identified in the coldest terrains. There is no meaningful difference in the distribution of hollow sizes between stages, suggesting that their morphological and reflectance properties are not substantially muted until they are fully grown. Stage 1 hollows are more commonly found on steeper slopes than nearby Stage 2 hollows, suggesting that slopes may be an important control on how long hollows remain active. Our hollow classifications are openly available and can help to inform global-scale studies of hollow evolution, and upcoming targeting efforts by the ESA/JAXA BepiColombo mission.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008747","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008747","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Hollows are small, shallow, irregularly shaped landforms, widespread across Mercury, interpreted to have formed via loss of volatiles. Here, we present the first global analysis of hollow degradation states using a new machine learning-derived global catalog. We define three classes, grading from younger/potentially active “Stage 1” (sharp morphology, high visible reflectance) to older/potentially expired “Stage 3” (softened morphology, reflectance similar to that of surroundings). Most analyzed hollows are Stage 1 (N = 1,545 individual hollows), which are more common than Stage 2 (N = 1,111) or Stage 3 (N = 10) hollows near the equator, consistent with the idea that insolation is a primary driver for hollow initiation/growth. Areas where Stage 2 hollows are more common than Stage 1 hollows may indicate regions of relative volatile depletion. Stage 3 hollows are rare, suggesting they are systematically missed during image review, or that hollows on Mercury are mostly young, have been recently reactivated, or are quickly erased once they become inactive. Temperature may limit hollow growth, given that only small hollows are identified in the coldest terrains. There is no meaningful difference in the distribution of hollow sizes between stages, suggesting that their morphological and reflectance properties are not substantially muted until they are fully grown. Stage 1 hollows are more commonly found on steeper slopes than nearby Stage 2 hollows, suggesting that slopes may be an important control on how long hollows remain active. Our hollow classifications are openly available and can help to inform global-scale studies of hollow evolution, and upcoming targeting efforts by the ESA/JAXA BepiColombo mission.

Abstract Image

汞上的空心:降解状态的全球分类和空心演化的见解
空洞是一种小而浅、形状不规则的地貌,遍布水星,据解释是由于挥发物的流失而形成的。在这里,我们使用新的机器学习衍生的全局目录提出了空心退化状态的第一个全局分析。我们定义了三个等级,从较年轻/潜在活跃的“第1阶段”(尖锐的形态,高可见反射率)到较老/潜在过期的“第3阶段”(软化的形态,反射率与周围环境相似)。大多数分析的空洞是第1阶段(N = 1,545个单独的空洞),这比赤道附近的第2阶段(N = 1,111)或第3阶段(N = 10)空洞更常见,这与日照是空洞形成/生长的主要驱动因素的观点一致。第2阶段空洞比第1阶段空洞更常见的地区可能表明相对挥发性枯竭的地区。第三阶段的空洞是罕见的,这表明它们在图像检查过程中被系统地遗漏了,或者水星上的空洞大多是年轻的,最近被重新激活,或者一旦它们变得不活跃就会很快被抹去。温度可能会限制空心的生长,因为在最冷的地区只有小的空心被发现。不同阶段的空心尺寸分布没有显著差异,这表明它们的形态和反射特性在它们完全生长之前并没有明显减弱。第一阶段的空洞比第二阶段的空洞更常出现在更陡峭的斜坡上,这表明斜坡可能是空洞保持活跃时间的重要控制因素。我们的空心分类是公开的,可以为全球范围内的空心演化研究提供信息,并为ESA/JAXA BepiColombo任务即将开展的目标工作提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信