Kinetic Investigation of the Emulsion Polymerization of Vinylidene Fluoride

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Burak Hanamirian, Azzurra Agostini, Isabelle Chaduc, Giulio Brinati, Bradley Kent, Giuseppe Storti, Mattia Sponchioni
{"title":"Kinetic Investigation of the Emulsion Polymerization of Vinylidene Fluoride","authors":"Burak Hanamirian,&nbsp;Azzurra Agostini,&nbsp;Isabelle Chaduc,&nbsp;Giulio Brinati,&nbsp;Bradley Kent,&nbsp;Giuseppe Storti,&nbsp;Mattia Sponchioni","doi":"10.1002/mren.202400023","DOIUrl":null,"url":null,"abstract":"<p>Poly(vinylidene fluoride) (PVDF) is among the most produced fluoropolymers, second only to polytetrafluoroethylene. Despite its popularity, the complex microstructural properties achieved during the polymerization are not well documented in the literature. In particular, available models only track the chain length distribution of the polymer, while neglecting the distribution of other important properties, affecting the final behavior of the product. In this work, a 2D kinetic model, evaluating not only the chain length but also the number of terminal double bonds (TDBs) per chain, is developed. The numerical solution of the model is achieved by fractionating the population of polymer chains into classes with a specific number of TDBs and using the method of moments for each class. The model results are compared with experimental evidences for the amount of produced polymer, moles of main chain-ends, number, and weight average molecular weight as well as full molecular weight distribution. Based on this comparison, kinetic parameters are estimated by optimization using genetic algorithm. The model reliability is finally verified using additional experimental data at different temperatures and amounts of initiator.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"19 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mren.202400023","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202400023","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(vinylidene fluoride) (PVDF) is among the most produced fluoropolymers, second only to polytetrafluoroethylene. Despite its popularity, the complex microstructural properties achieved during the polymerization are not well documented in the literature. In particular, available models only track the chain length distribution of the polymer, while neglecting the distribution of other important properties, affecting the final behavior of the product. In this work, a 2D kinetic model, evaluating not only the chain length but also the number of terminal double bonds (TDBs) per chain, is developed. The numerical solution of the model is achieved by fractionating the population of polymer chains into classes with a specific number of TDBs and using the method of moments for each class. The model results are compared with experimental evidences for the amount of produced polymer, moles of main chain-ends, number, and weight average molecular weight as well as full molecular weight distribution. Based on this comparison, kinetic parameters are estimated by optimization using genetic algorithm. The model reliability is finally verified using additional experimental data at different temperatures and amounts of initiator.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Reaction Engineering
Macromolecular Reaction Engineering 工程技术-高分子科学
CiteScore
2.60
自引率
20.00%
发文量
55
审稿时长
3 months
期刊介绍: Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信