Comparison of Mid-Infrared and Ultraviolet Lasers Coupled to the MALDESI Source for the Detection of Secondary Metabolites and Structural Lipids in Arabidopsis thaliana

IF 1.9 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
Sarah M. Ashbacher, Jeffrey G. Manni, David C. Muddiman
{"title":"Comparison of Mid-Infrared and Ultraviolet Lasers Coupled to the MALDESI Source for the Detection of Secondary Metabolites and Structural Lipids in Arabidopsis thaliana","authors":"Sarah M. Ashbacher,&nbsp;Jeffrey G. Manni,&nbsp;David C. Muddiman","doi":"10.1002/jms.5118","DOIUrl":null,"url":null,"abstract":"<p>Matrix-assisted laser desorption electrospray ionization (MALDESI) conventionally utilizes a mid-infrared (IR) laser for the desorption of neutrals, allowing for detection of hundreds to thousands of analytes simultaneously. This platform enables mass spectrometry imaging (MSI) capabilities to not only detect specific molecules but also reveal the distribution and localization of a wide range of biomolecules across an organism. However, an IR laser comes with its disadvantages when imaging plants. At a mid-IR wavelength (2970 nm), the compartmentalized endogenous water within the leaf structure acts as an internal matrix, causing rapid heating, and, in turn, degrades the spatial resolution and signal quality. An ultraviolet (UV) laser operates at wavelengths that overlap with the absorption bands of secondary metabolites allowing them to serve as sacrificial matrix molecules. With the integration and optimization of a 355 nm UV laser into the MALDESI-MSI NextGen source for the analysis of plants, we were able to detect diverse molecular classes including flavonoids, fatty acid derivatives, galactolipids, and glucosinolates, at higher ion abundances when compared to the mid-IR laser. These results show that re-visiting UV-MALDESI-MSI, without the need for an exogenous matrix, provides a promising approach for the detection and imaging of important analytes in plants.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"60 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.5118","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jms.5118","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Matrix-assisted laser desorption electrospray ionization (MALDESI) conventionally utilizes a mid-infrared (IR) laser for the desorption of neutrals, allowing for detection of hundreds to thousands of analytes simultaneously. This platform enables mass spectrometry imaging (MSI) capabilities to not only detect specific molecules but also reveal the distribution and localization of a wide range of biomolecules across an organism. However, an IR laser comes with its disadvantages when imaging plants. At a mid-IR wavelength (2970 nm), the compartmentalized endogenous water within the leaf structure acts as an internal matrix, causing rapid heating, and, in turn, degrades the spatial resolution and signal quality. An ultraviolet (UV) laser operates at wavelengths that overlap with the absorption bands of secondary metabolites allowing them to serve as sacrificial matrix molecules. With the integration and optimization of a 355 nm UV laser into the MALDESI-MSI NextGen source for the analysis of plants, we were able to detect diverse molecular classes including flavonoids, fatty acid derivatives, galactolipids, and glucosinolates, at higher ion abundances when compared to the mid-IR laser. These results show that re-visiting UV-MALDESI-MSI, without the need for an exogenous matrix, provides a promising approach for the detection and imaging of important analytes in plants.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mass Spectrometry
Journal of Mass Spectrometry 化学-光谱学
CiteScore
5.10
自引率
0.00%
发文量
84
审稿时长
1.5 months
期刊介绍: The Journal of Mass Spectrometry publishes papers on a broad range of topics of interest to scientists working in both fundamental and applied areas involving the study of gaseous ions. The aim of JMS is to serve the scientific community with information provided and arranged to help senior investigators to better stay abreast of new discoveries and studies in their own field, to make them aware of events and developments in associated fields, and to provide students and newcomers the basic tools with which to learn fundamental and applied aspects of mass spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信