{"title":"Domain Knowledge Embedded InSAR-Based 3D Displacement Monitoring of Urban Buildings","authors":"Ya-Nan Du, De-Cheng Feng, Gang Wu","doi":"10.1155/stc/8864614","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Continuous monitoring of building displacement is crucial for urban structural safety. While traditional methods are costly, Interferometric Synthetic Aperture Radar (InSAR) offers a cost-effective alternative, providing long-term displacement data. However, due to the insensitivity of SAR radar to north-south displacement, using InSAR alone can only measure settlement and east-west displacement. To address this limitation, this paper presents a three-dimensional (3D) deformation extraction model. The model embeds domain knowledge to introduce additional constraints, which are then used to establish the relationship between north-south and east-west displacement. This relationship allows for the extraction of 3D displacement of buildings from the line of sight (LOS) displacement measured by InSAR. This model was applied to Tower 2 of Yingli International Financial Center (YIFC) in Chongqing, China, and the 3D displacement of the building between 2018 and 2021 was obtained.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/8864614","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/8864614","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous monitoring of building displacement is crucial for urban structural safety. While traditional methods are costly, Interferometric Synthetic Aperture Radar (InSAR) offers a cost-effective alternative, providing long-term displacement data. However, due to the insensitivity of SAR radar to north-south displacement, using InSAR alone can only measure settlement and east-west displacement. To address this limitation, this paper presents a three-dimensional (3D) deformation extraction model. The model embeds domain knowledge to introduce additional constraints, which are then used to establish the relationship between north-south and east-west displacement. This relationship allows for the extraction of 3D displacement of buildings from the line of sight (LOS) displacement measured by InSAR. This model was applied to Tower 2 of Yingli International Financial Center (YIFC) in Chongqing, China, and the 3D displacement of the building between 2018 and 2021 was obtained.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.