Preparation of High-Heat-Resistant Silicone Hollow Particles

IF 1.3 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Hyota Nishi, Shintaro Ishidate, Ryuta Amasaki, Reina Nakamoto, Shinya Katsube, Nozomu Suzuki, Toyoko Suzuki, Hideto Minami
{"title":"Preparation of High-Heat-Resistant Silicone Hollow Particles","authors":"Hyota Nishi,&nbsp;Shintaro Ishidate,&nbsp;Ryuta Amasaki,&nbsp;Reina Nakamoto,&nbsp;Shinya Katsube,&nbsp;Nozomu Suzuki,&nbsp;Toyoko Suzuki,&nbsp;Hideto Minami","doi":"10.1002/mren.202400046","DOIUrl":null,"url":null,"abstract":"<p>Single hollow particles are used in various fields, particularly in thermal insulation materials, owing to their low thermal conductivity attributed to encapsulated air properties. “The self-assembling phase separated polymer (SaPSeP) method” is an original hollowing method that is proposed by this laboratory 25 years ago. Most hollow particles prepared by the SaPSeP method have carbon, oxygen, and hydrogen polymer shells, which lack sufficient heat resistance. In this study, hollow particles with a silicone shell, which is highly heat-resistant, are prepared using the SaPSeP method using a trimer of 3-methacryloxypropylmethyldimethoxysilane (MPDS). The MPDS trimer (3MPDS) is synthesized through the sol–gel reaction of MPDS with a basic aqueous solution. Additionally, hollow particles are prepared using a new silicone oligomer composed of MPDS and dimethoxymethylvinylsilane (DMVS). Both hollow particles prepared from 3MPDS and from a new silicone oligomer composed of MPDS and DMVS showed high heat resistance. They maintained their hollow structure even when exposed to temperatures up to 900 °C.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202400046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single hollow particles are used in various fields, particularly in thermal insulation materials, owing to their low thermal conductivity attributed to encapsulated air properties. “The self-assembling phase separated polymer (SaPSeP) method” is an original hollowing method that is proposed by this laboratory 25 years ago. Most hollow particles prepared by the SaPSeP method have carbon, oxygen, and hydrogen polymer shells, which lack sufficient heat resistance. In this study, hollow particles with a silicone shell, which is highly heat-resistant, are prepared using the SaPSeP method using a trimer of 3-methacryloxypropylmethyldimethoxysilane (MPDS). The MPDS trimer (3MPDS) is synthesized through the sol–gel reaction of MPDS with a basic aqueous solution. Additionally, hollow particles are prepared using a new silicone oligomer composed of MPDS and dimethoxymethylvinylsilane (DMVS). Both hollow particles prepared from 3MPDS and from a new silicone oligomer composed of MPDS and DMVS showed high heat resistance. They maintained their hollow structure even when exposed to temperatures up to 900 °C.

Abstract Image

高耐热硅树脂中空颗粒的制备
单个中空颗粒由于其封装空气特性而具有低导热性,因此被用于各种领域,特别是在隔热材料中。“自组装相分离聚合物(SaPSeP)方法”是该实验室在25年前提出的一种独创的中空方法。SaPSeP方法制备的中空颗粒大多具有碳、氧、氢聚合物外壳,缺乏足够的耐热性。本研究以3-甲基丙烯氧基丙基甲基二甲氧基硅烷(MPDS)三聚体为原料,采用SaPSeP法制备了具有高耐热性的中空硅壳颗粒。通过MPDS与碱性水溶液的溶胶-凝胶反应合成了MPDS三聚体(3MPDS)。此外,利用MPDS和二甲氧基甲基乙烯基硅烷(DMVS)组成的新型有机硅低聚物制备了空心颗粒。由3MPDS和由MPDS和DMVS组成的新型有机硅低聚物制备的中空颗粒均具有较高的耐热性。即使暴露在高达900°C的温度下,它们也能保持空心结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Reaction Engineering
Macromolecular Reaction Engineering 工程技术-高分子科学
CiteScore
2.60
自引率
20.00%
发文量
55
审稿时长
3 months
期刊介绍: Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信