Preparation of High-Heat-Resistant Silicone Hollow Particles

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Hyota Nishi, Shintaro Ishidate, Ryuta Amasaki, Reina Nakamoto, Shinya Katsube, Nozomu Suzuki, Toyoko Suzuki, Hideto Minami
{"title":"Preparation of High-Heat-Resistant Silicone Hollow Particles","authors":"Hyota Nishi,&nbsp;Shintaro Ishidate,&nbsp;Ryuta Amasaki,&nbsp;Reina Nakamoto,&nbsp;Shinya Katsube,&nbsp;Nozomu Suzuki,&nbsp;Toyoko Suzuki,&nbsp;Hideto Minami","doi":"10.1002/mren.202400046","DOIUrl":null,"url":null,"abstract":"<p>Single hollow particles are used in various fields, particularly in thermal insulation materials, owing to their low thermal conductivity attributed to encapsulated air properties. “The self-assembling phase separated polymer (SaPSeP) method” is an original hollowing method that is proposed by this laboratory 25 years ago. Most hollow particles prepared by the SaPSeP method have carbon, oxygen, and hydrogen polymer shells, which lack sufficient heat resistance. In this study, hollow particles with a silicone shell, which is highly heat-resistant, are prepared using the SaPSeP method using a trimer of 3-methacryloxypropylmethyldimethoxysilane (MPDS). The MPDS trimer (3MPDS) is synthesized through the sol–gel reaction of MPDS with a basic aqueous solution. Additionally, hollow particles are prepared using a new silicone oligomer composed of MPDS and dimethoxymethylvinylsilane (DMVS). Both hollow particles prepared from 3MPDS and from a new silicone oligomer composed of MPDS and DMVS showed high heat resistance. They maintained their hollow structure even when exposed to temperatures up to 900 °C.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"19 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202400046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single hollow particles are used in various fields, particularly in thermal insulation materials, owing to their low thermal conductivity attributed to encapsulated air properties. “The self-assembling phase separated polymer (SaPSeP) method” is an original hollowing method that is proposed by this laboratory 25 years ago. Most hollow particles prepared by the SaPSeP method have carbon, oxygen, and hydrogen polymer shells, which lack sufficient heat resistance. In this study, hollow particles with a silicone shell, which is highly heat-resistant, are prepared using the SaPSeP method using a trimer of 3-methacryloxypropylmethyldimethoxysilane (MPDS). The MPDS trimer (3MPDS) is synthesized through the sol–gel reaction of MPDS with a basic aqueous solution. Additionally, hollow particles are prepared using a new silicone oligomer composed of MPDS and dimethoxymethylvinylsilane (DMVS). Both hollow particles prepared from 3MPDS and from a new silicone oligomer composed of MPDS and DMVS showed high heat resistance. They maintained their hollow structure even when exposed to temperatures up to 900 °C.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Reaction Engineering
Macromolecular Reaction Engineering 工程技术-高分子科学
CiteScore
2.60
自引率
20.00%
发文量
55
审稿时长
3 months
期刊介绍: Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信