Maria A. Beamer, Saori Furuta
{"title":"Redefining Cell Culture Using a 3D Flipwell Co-culture System: A Mimetic for Gut Architecture and Dynamics In Vitro","authors":"Maria A. Beamer, Saori Furuta","doi":"10.1002/cpz1.70107","DOIUrl":null,"url":null,"abstract":"<p>Gut mucosae are composed of stratified layers of microbes, a selectively permeable mucus, an epithelial lining, and connective tissue homing immune cells. Studying cellular and chemical interactions between the gut mucosal components has been limited without a good model system. We have engineered a three-dimensional (3D) multi-cellular co-culture system we coined “3D Flipwell system” using cell culture inserts stacked against each other. This system allows an assessment of the impact of a gut mucosal environmental change on interactions between gut bacteria, epithelia, and immune cells. As such, this system can be utilized in examining the effects of exogenous stimuli, such as dietary nutrients, bacterial infection, and drugs, on the gut mucosa that could predetermine how these stimuli might influence the rest of body. Here, we describe the methods of construction and application of the new 3D Flipwell system we utilized previously in assessing the crosstalk between the gut mucosa and macrophage polarization. We demonstrate the physiological responses of different components of the co-cultures to Sepiapterin (SEP), the precursor of the nitric oxide synthase cofactor tetrahydrobiopterin (BH<sub>4</sub>). We reported previously that SEP induces a pro-immunogenic shift of macrophages having acquired an immune suppressive phenotype. We also showed that SEP induces a defense mechanism of commensal gut bacteria. The protocol describing the assembly and use of the 3D Flipwell co-culture system herein would grant its utility in evaluating the concurrent effects of pharmacologic and microbiologic stimuli on gut mucosal components. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: 3D Flipwell construction, assembly, and collagen coating</p><p><b>Basic Protocol 2</b>: Flipwell cell seeding and cell culture</p><p><b>Basic Protocol 3</b>: Addition of bacterial culture to the Flipwell system</p><p><b>Basic Protocol 4</b>: Flipwell disassembly for scanning electron microscopy (SEM) studies</p><p><b>Basic Protocol 5</b>: Immunofluorescence antibody staining for confocal microscopy</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"5 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpz1.70107","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.70107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Gut mucosae are composed of stratified layers of microbes, a selectively permeable mucus, an epithelial lining, and connective tissue homing immune cells. Studying cellular and chemical interactions between the gut mucosal components has been limited without a good model system. We have engineered a three-dimensional (3D) multi-cellular co-culture system we coined “3D Flipwell system” using cell culture inserts stacked against each other. This system allows an assessment of the impact of a gut mucosal environmental change on interactions between gut bacteria, epithelia, and immune cells. As such, this system can be utilized in examining the effects of exogenous stimuli, such as dietary nutrients, bacterial infection, and drugs, on the gut mucosa that could predetermine how these stimuli might influence the rest of body. Here, we describe the methods of construction and application of the new 3D Flipwell system we utilized previously in assessing the crosstalk between the gut mucosa and macrophage polarization. We demonstrate the physiological responses of different components of the co-cultures to Sepiapterin (SEP), the precursor of the nitric oxide synthase cofactor tetrahydrobiopterin (BH4). We reported previously that SEP induces a pro-immunogenic shift of macrophages having acquired an immune suppressive phenotype. We also showed that SEP induces a defense mechanism of commensal gut bacteria. The protocol describing the assembly and use of the 3D Flipwell co-culture system herein would grant its utility in evaluating the concurrent effects of pharmacologic and microbiologic stimuli on gut mucosal components. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC.
Basic Protocol 1: 3D Flipwell construction, assembly, and collagen coating
Basic Protocol 2: Flipwell cell seeding and cell culture
Basic Protocol 3: Addition of bacterial culture to the Flipwell system
Basic Protocol 4: Flipwell disassembly for scanning electron microscopy (SEM) studies
Basic Protocol 5: Immunofluorescence antibody staining for confocal microscopy