Wan Nursyafiqah Wan Zamri, Keat Khim Ong, Norherdawati Kasim, Syed Mohd Shafiq Syed Ahmad, Nor Laili-Azua Jamari
{"title":"Removal of Fluorotelomer Olefin from Aqueous Solution by Ion Exchange Resin","authors":"Wan Nursyafiqah Wan Zamri, Keat Khim Ong, Norherdawati Kasim, Syed Mohd Shafiq Syed Ahmad, Nor Laili-Azua Jamari","doi":"10.1002/masy.202300242","DOIUrl":null,"url":null,"abstract":"<p>Fluorotelomers (FT) are a class of perfluoroalkyl substances (PFAS) that have a variety of applications due to their unique chemical properties. However, fluorotelomers and some of their breakdown products have raised environmental and health concerns due to their persistence, bioaccumulation, and potential toxicity. Hence, its removal from industrial waste is essential. In this study, anion exchange resin as an adsorbent is investigated for fluorotelomer olefin (FTO) removal. Three different parameters are investigated: adsorbent dosage, contact time, and initial concentration of FTO. The effects of other compounds on FTO removal are also investigated. The surface morphology and surface area of anion exchange resin are also conducted using a scanning electron microscope (SEM) and Brunauer–Emmett–Teller (BET), respectively. The surface of anion exchange shows smooth and fractured structure with 2.0381 mg<sup>2</sup> g<sup>−1</sup> surface area. The results show fast and high removal of FTO up to 80% using optimum sorption condition (1.25 mg, 5 h, and 400 mg L<sup>−1</sup>). In addition, the removal efficiency of FTO is not affected by the presence of other interference compounds. The understanding of FTO removal through anion exchange resin offered by this work should lead to more effective applications for fluorotelomers removal from the environment.</p>","PeriodicalId":18107,"journal":{"name":"Macromolecular Symposia","volume":"414 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Symposia","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/masy.202300242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorotelomers (FT) are a class of perfluoroalkyl substances (PFAS) that have a variety of applications due to their unique chemical properties. However, fluorotelomers and some of their breakdown products have raised environmental and health concerns due to their persistence, bioaccumulation, and potential toxicity. Hence, its removal from industrial waste is essential. In this study, anion exchange resin as an adsorbent is investigated for fluorotelomer olefin (FTO) removal. Three different parameters are investigated: adsorbent dosage, contact time, and initial concentration of FTO. The effects of other compounds on FTO removal are also investigated. The surface morphology and surface area of anion exchange resin are also conducted using a scanning electron microscope (SEM) and Brunauer–Emmett–Teller (BET), respectively. The surface of anion exchange shows smooth and fractured structure with 2.0381 mg2 g−1 surface area. The results show fast and high removal of FTO up to 80% using optimum sorption condition (1.25 mg, 5 h, and 400 mg L−1). In addition, the removal efficiency of FTO is not affected by the presence of other interference compounds. The understanding of FTO removal through anion exchange resin offered by this work should lead to more effective applications for fluorotelomers removal from the environment.
期刊介绍:
Macromolecular Symposia presents state-of-the-art research articles in the field of macromolecular chemistry and physics. All submitted contributions are peer-reviewed to ensure a high quality of published manuscripts. Accepted articles will be typeset and published as a hardcover edition together with online publication at Wiley InterScience, thereby guaranteeing an immediate international dissemination.