{"title":"Light-Based Desalination of Water Using Polypyrrole-Coated Fabrics","authors":"Ryuga Sakabe, Kanade Matsui, Takahiro Funatsu, Tomoyasu Hirai, Yoshinobu Nakamura, Syuji Fujii","doi":"10.1002/mren.202400034","DOIUrl":null,"url":null,"abstract":"<p>Fabrics consisting of cotton-core/polypyrrole (PPy)-sheath fibers (cotton/PPy fabrics) are synthesized by aqueous chemical oxidative seeded polymerization of pyrrole and are utilized as a solar evaporation device. Scanning electron microscopy studies and elemental microanalyses reveal the thickness of the PPy sheath increases from a few tens nm to ≈200 nm with an increase of pyrrole monomer concentration in the polymerization system. The temperature of cotton/PPy fabrics increases upon irradiation with artificial sunlight to ≈33–45 °C in the dry state, due to light-to-heat photothermal conversion by the PPy component. Thanks to the photothermal property of the fabrics, water impregnated within the cotton/PPy fabrics can evaporate efficiently under the irradiation of artificial sunlight. Light-induced water evaporation experiment using an artificial seawater confirms that ionic concentrations drastically decreases, indicating successful desalination.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"19 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202400034","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fabrics consisting of cotton-core/polypyrrole (PPy)-sheath fibers (cotton/PPy fabrics) are synthesized by aqueous chemical oxidative seeded polymerization of pyrrole and are utilized as a solar evaporation device. Scanning electron microscopy studies and elemental microanalyses reveal the thickness of the PPy sheath increases from a few tens nm to ≈200 nm with an increase of pyrrole monomer concentration in the polymerization system. The temperature of cotton/PPy fabrics increases upon irradiation with artificial sunlight to ≈33–45 °C in the dry state, due to light-to-heat photothermal conversion by the PPy component. Thanks to the photothermal property of the fabrics, water impregnated within the cotton/PPy fabrics can evaporate efficiently under the irradiation of artificial sunlight. Light-induced water evaporation experiment using an artificial seawater confirms that ionic concentrations drastically decreases, indicating successful desalination.
期刊介绍:
Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.