L. Bruno Chandrasekar, S. Dinagaran, Saravanan Pandiaraj, Khuloud A. Alibrahim, Abdullah N. Alodhayb, M. Karunakaran, Lalitha Gnanasekaran, V. Pazhanivelu, P. Shunmuga Sundaram, Sonaimuthu Mohandoss
{"title":"Study of Tunneling Properties in ZnO/ZnCdO Trilayer Heterostructure for Spintronic Devices: Effect of the In-Plane Wave Vector","authors":"L. Bruno Chandrasekar, S. Dinagaran, Saravanan Pandiaraj, Khuloud A. Alibrahim, Abdullah N. Alodhayb, M. Karunakaran, Lalitha Gnanasekaran, V. Pazhanivelu, P. Shunmuga Sundaram, Sonaimuthu Mohandoss","doi":"10.1007/s13538-025-01720-1","DOIUrl":null,"url":null,"abstract":"<div><p>Electron tunneling in ZnO/ZnCdO double-barrier trilayer semiconductor heterostructure is theoretically examined using the transfer matrix method. The effect of well width influences the energy of resonance transmission and the full width at half maximum of the resonance peak. The Dresselhaus spin–orbit interaction causes the separation between the spin components, and the increasing in-plane wave vector enhances the spin separation. The dwell time of electrons in the heterostructure is high at a high well width. The full width at half maximum of the barrier transparency peak is examined, and hence, the tunneling lifetime for various in-plane wave vectors is reported. The difference between the tunneling lifetime of spin-up and spin-down electrons is high at higher values of the in-plane wave vector.</p></div>","PeriodicalId":499,"journal":{"name":"Brazilian Journal of Physics","volume":"55 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s13538-025-01720-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electron tunneling in ZnO/ZnCdO double-barrier trilayer semiconductor heterostructure is theoretically examined using the transfer matrix method. The effect of well width influences the energy of resonance transmission and the full width at half maximum of the resonance peak. The Dresselhaus spin–orbit interaction causes the separation between the spin components, and the increasing in-plane wave vector enhances the spin separation. The dwell time of electrons in the heterostructure is high at a high well width. The full width at half maximum of the barrier transparency peak is examined, and hence, the tunneling lifetime for various in-plane wave vectors is reported. The difference between the tunneling lifetime of spin-up and spin-down electrons is high at higher values of the in-plane wave vector.
期刊介绍:
The Brazilian Journal of Physics is a peer-reviewed international journal published by the Brazilian Physical Society (SBF). The journal publishes new and original research results from all areas of physics, obtained in Brazil and from anywhere else in the world. Contents include theoretical, practical and experimental papers as well as high-quality review papers. Submissions should follow the generally accepted structure for journal articles with basic elements: title, abstract, introduction, results, conclusions, and references.