Urolithin A Enhances Tight Junction Protein Expression in Endothelial Cells Cultured In Vitro via Pink1-Parkin-Mediated Mitophagy in Irradiated Astrocytes

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Gengxin Lu, Junyu Wu, Zhihui Zheng, Zhezhi Deng, Xue Xu, Xintian Li, Xiaoqiu Liang, Weiwei Qi, Shifeng Zhang, Yuemin Qiu, Minping Li, Junjie Guo, Haiwei Huang
{"title":"Urolithin A Enhances Tight Junction Protein Expression in Endothelial Cells Cultured In Vitro via Pink1-Parkin-Mediated Mitophagy in Irradiated Astrocytes","authors":"Gengxin Lu,&nbsp;Junyu Wu,&nbsp;Zhihui Zheng,&nbsp;Zhezhi Deng,&nbsp;Xue Xu,&nbsp;Xintian Li,&nbsp;Xiaoqiu Liang,&nbsp;Weiwei Qi,&nbsp;Shifeng Zhang,&nbsp;Yuemin Qiu,&nbsp;Minping Li,&nbsp;Junjie Guo,&nbsp;Haiwei Huang","doi":"10.1007/s12031-024-02302-7","DOIUrl":null,"url":null,"abstract":"<div><p>Radiation brain injury (RBI) is a complication of cranial tumor radiotherapy that significantly impacts patients' quality of life. Astrocyte-secreted vascular endothelial growth factor (VEGF) disrupts the blood–brain barrier (BBB) in RBI. However, further studies are required to elucidate the complex molecular mechanisms involved. Reactive oxygen species (ROS) are closely linked to VEGF pathway regulation, with excessive ROS potentially disrupting this pathway. Mitochondria, the primary ROS-producing organelles, play a crucial role under irradiation. Our findings suggest that irradiation activates astrocytes with altered polarity, generating both cellular and mitochondrial ROS. Concurrently, mitochondrial morphology and function are disrupted, leading to defective mitophagy and an accumulation of damaged mitochondria, which further exacerbates ROS damage. Urolithin A (UA) is a natural activator of mitophagy. We found that UA promoted mitophagy in irradiated astrocytes, reduced cellular and mitochondrial ROS, restored mitochondrial morphology and function, reversed VEGF overexpression, and attenuated the disruption of endothelial tight junction proteins in endothelial cells cultured with irradiated astrocyte supernatants. In conclusion, our study identifies a connection between impaired mitophagy and VEGF overexpression in radiation-induced astrocytes. We also demonstrated UA may serve as a therapeutic strategy for protecting the tight junction protein in RBI by enhancing mitophagy, reducing ROS accumulation, and downregulating VEGF expression.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-024-02302-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Radiation brain injury (RBI) is a complication of cranial tumor radiotherapy that significantly impacts patients' quality of life. Astrocyte-secreted vascular endothelial growth factor (VEGF) disrupts the blood–brain barrier (BBB) in RBI. However, further studies are required to elucidate the complex molecular mechanisms involved. Reactive oxygen species (ROS) are closely linked to VEGF pathway regulation, with excessive ROS potentially disrupting this pathway. Mitochondria, the primary ROS-producing organelles, play a crucial role under irradiation. Our findings suggest that irradiation activates astrocytes with altered polarity, generating both cellular and mitochondrial ROS. Concurrently, mitochondrial morphology and function are disrupted, leading to defective mitophagy and an accumulation of damaged mitochondria, which further exacerbates ROS damage. Urolithin A (UA) is a natural activator of mitophagy. We found that UA promoted mitophagy in irradiated astrocytes, reduced cellular and mitochondrial ROS, restored mitochondrial morphology and function, reversed VEGF overexpression, and attenuated the disruption of endothelial tight junction proteins in endothelial cells cultured with irradiated astrocyte supernatants. In conclusion, our study identifies a connection between impaired mitophagy and VEGF overexpression in radiation-induced astrocytes. We also demonstrated UA may serve as a therapeutic strategy for protecting the tight junction protein in RBI by enhancing mitophagy, reducing ROS accumulation, and downregulating VEGF expression.

尿素A通过pink1 - parkin介导的星形胶质细胞自噬增强内皮细胞紧密连接蛋白的表达
放射性脑损伤(RBI)是颅脑肿瘤放疗的并发症,严重影响患者的生活质量。星形胶质细胞分泌的血管内皮生长因子(VEGF)破坏RBI中的血脑屏障(BBB)。然而,需要进一步的研究来阐明复杂的分子机制。活性氧(ROS)与VEGF通路调控密切相关,过量的ROS可能会破坏这一通路。线粒体是产生ros的主要细胞器,在辐照下起着至关重要的作用。我们的研究结果表明,照射激活星形胶质细胞改变极性,产生细胞和线粒体ROS。同时,线粒体形态和功能被破坏,导致线粒体自噬缺陷和受损线粒体的积累,进一步加剧了ROS损伤。尿素A (UA)是一种天然的线粒体自噬激活剂。我们发现UA促进辐照星形胶质细胞的线粒体自噬,减少细胞和线粒体ROS,恢复线粒体形态和功能,逆转VEGF过表达,减轻辐照星形胶质细胞上清培养的内皮细胞中内皮紧密连接蛋白的破坏。总之,我们的研究确定了辐射诱导的星形胶质细胞中线粒体自噬受损与VEGF过度表达之间的联系。我们还证明了UA可以作为一种治疗策略,通过增强线粒体自噬、减少ROS积累和下调VEGF表达来保护RBI中的紧密连接蛋白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Neuroscience
Journal of Molecular Neuroscience 医学-神经科学
CiteScore
6.60
自引率
3.20%
发文量
142
审稿时长
1 months
期刊介绍: The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信