SPECIFIC FEATURES OF WAVE TRAIN DEVELOPMENT IN A STREAMWISE DISTURBANCE OF A SUPERSONIC BOUNDARY LAYER

IF 0.5 4区 工程技术 Q4 MECHANICS
A. D. Kosinov, N. V. Semionov, M. V. Piterimova, A. A. Yatskikh, Yu. G. Yermolaev, B. V. Smorodsky, A. V. Shmakova
{"title":"SPECIFIC FEATURES OF WAVE TRAIN DEVELOPMENT IN A STREAMWISE DISTURBANCE OF A SUPERSONIC BOUNDARY LAYER","authors":"A. D. Kosinov,&nbsp;N. V. Semionov,&nbsp;M. V. Piterimova,&nbsp;A. A. Yatskikh,&nbsp;Yu. G. Yermolaev,&nbsp;B. V. Smorodsky,&nbsp;A. V. Shmakova","doi":"10.1134/S0021894424040084","DOIUrl":null,"url":null,"abstract":"<p>Distributions of the amplitude of controlled disturbances in space and time and their frequency-wave characteristics are obtained from experimental results on weakly nonlinear development of the wave train in the region of a stationary wake inside the boundary layer on a flat plate at the Mach number M = 2. A stationary streamwise disturbance is generated by a pair of weak oblique shock waves. Controlled disturbances are inserted into the flow by a local high-frequency glow discharge located inside the model. The development of controlled disturbances is analyzed on the basis of the linear theory of hydrodynamic stability. Typical resonant wave triplets are identified. It is found that flow inhomogeneity suppresses the mechanisms of interaction of controlled disturbances.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"65 4","pages":"647 - 664"},"PeriodicalIF":0.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0021894424040084","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Distributions of the amplitude of controlled disturbances in space and time and their frequency-wave characteristics are obtained from experimental results on weakly nonlinear development of the wave train in the region of a stationary wake inside the boundary layer on a flat plate at the Mach number M = 2. A stationary streamwise disturbance is generated by a pair of weak oblique shock waves. Controlled disturbances are inserted into the flow by a local high-frequency glow discharge located inside the model. The development of controlled disturbances is analyzed on the basis of the linear theory of hydrodynamic stability. Typical resonant wave triplets are identified. It is found that flow inhomogeneity suppresses the mechanisms of interaction of controlled disturbances.

超音速边界层湍流扰动中波列发展的特殊特征
根据马赫数M = 2时平板边界层内固定尾迹区域的弱非线性波列发展实验结果,得到了受控扰动振幅在时空上的分布及其频波特性。平稳的流向扰动是由一对弱斜激波产生的。模型内部的局部高频辉光放电将可控扰动插入流中。基于水动力稳定性的线性理论,分析了可控扰动的发展。确定了典型的共振波三联体。研究发现,流动不均匀性抑制了可控扰动的相互作用机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
43
审稿时长
4-8 weeks
期刊介绍: Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信