{"title":"Assessing the Multi-Regime Capability of the Super-Grid Linear Eddy Model (SG-LEM) Using the Darmstadt Multi-Regime Burner","authors":"Abhilash Menon, Alan Kerstein, Michael Oevermann","doi":"10.1007/s10494-024-00602-x","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advances in combustion modelling for Large Eddy Simulation (LES) have increasingly utilised lower-dimensional manifolds, such as Flamelet Generated Manifolds and Flamelet/Progress Variable methods, due to their computational efficiency. These methods typically rely on one-dimensional representations of flame structures, often assuming premixed or non-premixed configurations. However, practical combustion devices frequently operate under partially-premixed conditions and present challenges due to mixture inhomogeneities and complex flow features. The Linear Eddy Model (LEM) offers an alternative by directly simulating turbulence-chemistry interactions without presuming specific flame structures. However, traditional LES-LEM approaches are computationally quite expensive due to the need for resolved LEM domains to be embedded in every LES cell.The authors developed the Super-Grid LEM (SG-LEM) method (Comb. Theor. Model. 28, 2024) to address these computational challenges by coarse-graining the LES mesh and embedding individual LEM domains within <i>clusters</i> of LES cells. This study evaluates SG-LEM in the context of the Multi-Regime Burner (MRB) introduced by Butz et al. (Combust. Flame, 210, 2019), which features both premixed and non-premixed flame characteristics. SG-LEM simulations of the MRB case demonstrate the method’s sensitivity to clustering parameters, with flow-aligned clusters significantly improving flame stability. LEM domains on the super-grid were able to represent the MRB flame topology while LES radial profiles including velocity, mixture fraction, temperature, and <span>\\({\\textrm{CO}}\\)</span> mass fraction, were validated against experimental data and also reference simulations using standard combustion closures. The work also investigates discrepancies in CO profiles using conditional statistics and stand-alone LEM simulations. Finally, the work identifies areas of improvement for the SG-LEM framework, in particular relating to cluster generation, and (advective and diffusive) mass exchange between neighbouring LEM domains, as well as possible solutions for future SG-LEM implementations which could improve the model’s predictive capability.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 2","pages":"395 - 420"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-024-00602-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00602-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in combustion modelling for Large Eddy Simulation (LES) have increasingly utilised lower-dimensional manifolds, such as Flamelet Generated Manifolds and Flamelet/Progress Variable methods, due to their computational efficiency. These methods typically rely on one-dimensional representations of flame structures, often assuming premixed or non-premixed configurations. However, practical combustion devices frequently operate under partially-premixed conditions and present challenges due to mixture inhomogeneities and complex flow features. The Linear Eddy Model (LEM) offers an alternative by directly simulating turbulence-chemistry interactions without presuming specific flame structures. However, traditional LES-LEM approaches are computationally quite expensive due to the need for resolved LEM domains to be embedded in every LES cell.The authors developed the Super-Grid LEM (SG-LEM) method (Comb. Theor. Model. 28, 2024) to address these computational challenges by coarse-graining the LES mesh and embedding individual LEM domains within clusters of LES cells. This study evaluates SG-LEM in the context of the Multi-Regime Burner (MRB) introduced by Butz et al. (Combust. Flame, 210, 2019), which features both premixed and non-premixed flame characteristics. SG-LEM simulations of the MRB case demonstrate the method’s sensitivity to clustering parameters, with flow-aligned clusters significantly improving flame stability. LEM domains on the super-grid were able to represent the MRB flame topology while LES radial profiles including velocity, mixture fraction, temperature, and \({\textrm{CO}}\) mass fraction, were validated against experimental data and also reference simulations using standard combustion closures. The work also investigates discrepancies in CO profiles using conditional statistics and stand-alone LEM simulations. Finally, the work identifies areas of improvement for the SG-LEM framework, in particular relating to cluster generation, and (advective and diffusive) mass exchange between neighbouring LEM domains, as well as possible solutions for future SG-LEM implementations which could improve the model’s predictive capability.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.