LES Prediction of the Ignition Probability Map for a Model Aeronautical Spray Burner

IF 2 3区 工程技术 Q3 MECHANICS
Ernesto Sandoval Garzon, Cédric Mehl, Olivier Colin
{"title":"LES Prediction of the Ignition Probability Map for a Model Aeronautical Spray Burner","authors":"Ernesto Sandoval Garzon,&nbsp;Cédric Mehl,&nbsp;Olivier Colin","doi":"10.1007/s10494-024-00617-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the computation of the ignition probability map of a model gas turbine, investigated experimentally at CORIA laboratory, using Large Eddy Simulation (LES). The simulations leverage the recently proposed TFM-AMR-I model, which is based on the Thickened Flame Model (TFM) formalism and enables a full flame resolution (i.e. no thickening) of the flame kernel in the initial instants of ignition. LES simulations of ignition are performed for 14 spatial points distributed in the combustion chamber, with 6 repetitions for each in order to obtain a reasonable estimate of ignition probabilities. Probabilities are adequately predicted for most of the selected points, with a typical error of 30 <span>\\(\\%\\)</span>. Nevertheless, the ignition probability is largely over-estimated at two locations where the mean diameter of liquid droplets is shown to be under-predicted, which may lead to too easy ignitions. Parametric variations show a satisfying robustness of the proposed approach with the two following key highlights: (i) the initial full flame resolution made possible by TFM-AMR-I is necessary, as an abrupt initial thickening leads to an artificial extinction; (ii) a correction of the over-sensitivity of the thickened flame to stretch, recently proposed in the literature, is necessary to predict ignition accurately.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 2","pages":"449 - 467"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00617-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the computation of the ignition probability map of a model gas turbine, investigated experimentally at CORIA laboratory, using Large Eddy Simulation (LES). The simulations leverage the recently proposed TFM-AMR-I model, which is based on the Thickened Flame Model (TFM) formalism and enables a full flame resolution (i.e. no thickening) of the flame kernel in the initial instants of ignition. LES simulations of ignition are performed for 14 spatial points distributed in the combustion chamber, with 6 repetitions for each in order to obtain a reasonable estimate of ignition probabilities. Probabilities are adequately predicted for most of the selected points, with a typical error of 30 \(\%\). Nevertheless, the ignition probability is largely over-estimated at two locations where the mean diameter of liquid droplets is shown to be under-predicted, which may lead to too easy ignitions. Parametric variations show a satisfying robustness of the proposed approach with the two following key highlights: (i) the initial full flame resolution made possible by TFM-AMR-I is necessary, as an abrupt initial thickening leads to an artificial extinction; (ii) a correction of the over-sensitivity of the thickened flame to stretch, recently proposed in the literature, is necessary to predict ignition accurately.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信