Performance Analysis of Heat Transfer and User Thermal Comfort on Latent Heat Treatment of Scald Wound Based on Spray Cooling

IF 2 3区 工程技术 Q3 MECHANICS
Xinglong Zhang, Yu Wang, Risto Kosonen
{"title":"Performance Analysis of Heat Transfer and User Thermal Comfort on Latent Heat Treatment of Scald Wound Based on Spray Cooling","authors":"Xinglong Zhang,&nbsp;Yu Wang,&nbsp;Risto Kosonen","doi":"10.1007/s10494-024-00601-y","DOIUrl":null,"url":null,"abstract":"<div><p>Spray cooling has been proved to be an effective method for treating scald. However, enhancing its cooling effectiveness and improving user’s thermal comfort are the key factors for its practical implementation. In this study, numerical simulation with computational fluid dynamics software and experimental testing, and subjective questionnaire surveys. Factors influencing the heat removal efficiency of spray cooling for scald treatment and the user’s perception under spray cooling conditions were studied. The results showed that spray temperature had a significant impact on cooling efficiency. The distance between the spray and skin, mass flow rate, and spray medium also had noticeable effects. Additionally, the influence of spray cooling on thermal sensation and thermal comfort under different spray temperatures was investigated. By introducing a “temperature correction coefficient”, thermal sensation data closer to scald conditions were obtained. Experimental results demonstrated that compared to splashing, spray cooling exhibited better cooling effectiveness and comfort feelings. Using the Predicted Mean Vote and Thermal Comfortable Vote as indicators and considering both cooling effectiveness and human thermal comfort, the optimal cooling temperature for females was determined to be 13.1 °C and for males 13.5 °C under scald conditions.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 2","pages":"677 - 710"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00601-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Spray cooling has been proved to be an effective method for treating scald. However, enhancing its cooling effectiveness and improving user’s thermal comfort are the key factors for its practical implementation. In this study, numerical simulation with computational fluid dynamics software and experimental testing, and subjective questionnaire surveys. Factors influencing the heat removal efficiency of spray cooling for scald treatment and the user’s perception under spray cooling conditions were studied. The results showed that spray temperature had a significant impact on cooling efficiency. The distance between the spray and skin, mass flow rate, and spray medium also had noticeable effects. Additionally, the influence of spray cooling on thermal sensation and thermal comfort under different spray temperatures was investigated. By introducing a “temperature correction coefficient”, thermal sensation data closer to scald conditions were obtained. Experimental results demonstrated that compared to splashing, spray cooling exhibited better cooling effectiveness and comfort feelings. Using the Predicted Mean Vote and Thermal Comfortable Vote as indicators and considering both cooling effectiveness and human thermal comfort, the optimal cooling temperature for females was determined to be 13.1 °C and for males 13.5 °C under scald conditions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信