Catalytic hydrodenitrogenation of primary, secondary, and tertiary C12-alkyl amines over a platinum on zirconia catalyst†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Leoni-Franziska Klingelhöfer , Joakim Kattelus , Emma Verkama , Jorge A. Velasco , Leonhard Iser , Marcus Rose , Reetta Karinen , Riikka L. Puurunen
{"title":"Catalytic hydrodenitrogenation of primary, secondary, and tertiary C12-alkyl amines over a platinum on zirconia catalyst†","authors":"Leoni-Franziska Klingelhöfer ,&nbsp;Joakim Kattelus ,&nbsp;Emma Verkama ,&nbsp;Jorge A. Velasco ,&nbsp;Leonhard Iser ,&nbsp;Marcus Rose ,&nbsp;Reetta Karinen ,&nbsp;Riikka L. Puurunen","doi":"10.1039/d4cy01099j","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, the hydrodenitrogenation (HDN) of a primary amine (dodecylamine), a secondary amine (didodecylamine), and a tertiary amine (tridodecylamine) over a Pt/ZrO<sub>2</sub> catalyst was compared in a batch reactor. The main product of the amine hydrotreating was dodecane, but significant amounts of secondary amine were also formed as an intermediate during HDN of the primary and the tertiary amine. It was found that the primary amine is the only species for which direct HDN is possible; HDN of the secondary amine thus proceeds through a primary amine intermediate and HDN of the tertiary amine involves formation of the secondary amine, which decomposes to the primary amine. Consequently, HDN of the tertiary and secondary amines is slower than that of the primary amine. Kinetic modeling indicated that bimolecular condensation reactions of the primary amine, as well as potentially of the primary amine and the secondary amine, have a significant effect on the HDN process. Formation of the secondary amine from the primary amine increases the initial conversion and nitrogen removal rate but appeared to slow down the overall rate of nitrogen removal. The results thus demonstrate how condensation reactions affect amine HDN, which has implications for catalyst design for HDN of renewable feeds containing aliphatic amines.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 4","pages":"Pages 1259-1271"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/cy/d4cy01099j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S204447532400683X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the hydrodenitrogenation (HDN) of a primary amine (dodecylamine), a secondary amine (didodecylamine), and a tertiary amine (tridodecylamine) over a Pt/ZrO2 catalyst was compared in a batch reactor. The main product of the amine hydrotreating was dodecane, but significant amounts of secondary amine were also formed as an intermediate during HDN of the primary and the tertiary amine. It was found that the primary amine is the only species for which direct HDN is possible; HDN of the secondary amine thus proceeds through a primary amine intermediate and HDN of the tertiary amine involves formation of the secondary amine, which decomposes to the primary amine. Consequently, HDN of the tertiary and secondary amines is slower than that of the primary amine. Kinetic modeling indicated that bimolecular condensation reactions of the primary amine, as well as potentially of the primary amine and the secondary amine, have a significant effect on the HDN process. Formation of the secondary amine from the primary amine increases the initial conversion and nitrogen removal rate but appeared to slow down the overall rate of nitrogen removal. The results thus demonstrate how condensation reactions affect amine HDN, which has implications for catalyst design for HDN of renewable feeds containing aliphatic amines.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信