Computational Comparison and Validation of Point Spread Functions for Optical Microscopes

IF 4.2 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zicheng Liu;Yingying Qin;Jean-Claude Tinguely;Krishna Agarwal
{"title":"Computational Comparison and Validation of Point Spread Functions for Optical Microscopes","authors":"Zicheng Liu;Yingying Qin;Jean-Claude Tinguely;Krishna Agarwal","doi":"10.1109/TCI.2025.3536106","DOIUrl":null,"url":null,"abstract":"Point spread function (PSF) is quite important in modern computational microscopy techniques. Various approaches for measuring and modeling point spread functions have been proposed for both fluorescence and label-free microscopes. Among the various PSF candidates, it is often difficult to evaluate which PSF best suits the microscope and the experimental conditions. Visual qualification is often applied because there are hardly any techniques to quantify the quality of PSF as a basis for comparing different candidates and selecting the best one. To address this gap, we present a validation scheme based on the concept of confidence interval to evaluate the quality of fit of the PSF. This scheme is rigorous and supports precise validation for any microscope's PSF irrespective of their complexity, improving the performance of computational nanoscopy on them. We first demonstrate proof-of-principle of our scheme for a complex but practical label-free coherent imaging setup by comparing a variety of scalar and dyadic PSFs. Next, we validate our approach on conventional scalar PSFs using fluorescence based single molecule localization microscopy which needs PSF to compute the locations of single molecules. Lastly, we demonstrate how the scheme can be used in practice for challenging scenarios using images of gold nanorods placed on and illuminated by a photonic chip waveguide imaged using a label-free dark-field microscopy setup. Through these experiments, we demonstrate the generality and versatility of our PSF validation approach for the microscopy domain.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"11 ","pages":"170-178"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10857452","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10857452/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Point spread function (PSF) is quite important in modern computational microscopy techniques. Various approaches for measuring and modeling point spread functions have been proposed for both fluorescence and label-free microscopes. Among the various PSF candidates, it is often difficult to evaluate which PSF best suits the microscope and the experimental conditions. Visual qualification is often applied because there are hardly any techniques to quantify the quality of PSF as a basis for comparing different candidates and selecting the best one. To address this gap, we present a validation scheme based on the concept of confidence interval to evaluate the quality of fit of the PSF. This scheme is rigorous and supports precise validation for any microscope's PSF irrespective of their complexity, improving the performance of computational nanoscopy on them. We first demonstrate proof-of-principle of our scheme for a complex but practical label-free coherent imaging setup by comparing a variety of scalar and dyadic PSFs. Next, we validate our approach on conventional scalar PSFs using fluorescence based single molecule localization microscopy which needs PSF to compute the locations of single molecules. Lastly, we demonstrate how the scheme can be used in practice for challenging scenarios using images of gold nanorods placed on and illuminated by a photonic chip waveguide imaged using a label-free dark-field microscopy setup. Through these experiments, we demonstrate the generality and versatility of our PSF validation approach for the microscopy domain.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Computational Imaging
IEEE Transactions on Computational Imaging Mathematics-Computational Mathematics
CiteScore
8.20
自引率
7.40%
发文量
59
期刊介绍: The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信