Physical question, virtual answer: Optimized real-time physical simulations and physics-informed learning approaches for cargo loading stability

IF 3.7 4区 管理学 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Philipp Gabriel Mazur, Johannes Werner Melsbach, Detlef Schoder
{"title":"Physical question, virtual answer: Optimized real-time physical simulations and physics-informed learning approaches for cargo loading stability","authors":"Philipp Gabriel Mazur,&nbsp;Johannes Werner Melsbach,&nbsp;Detlef Schoder","doi":"10.1016/j.orp.2025.100329","DOIUrl":null,"url":null,"abstract":"<div><div>Cargo stability is a crucial requirement for safe cargo loading and transport. Current state-of-the-art approaches simplify cargo loading to an idealized static problem and employ geometric- and force-based approaches. In this research, we model cargo loading stability as a dynamic problem and propose two approaches. We use (a) a physical simulation using a real-time physics engine fitted for cargo loading and (b) a physics-informed learning model trained on cargo loading data. Both approaches are capable of handling dynamic physical behavior, either explicitly through simulation, or implicitly through training a recurrent neural network on physically-biased sequential cargo loading data. Given our two objectives of maximal accuracy and minimal runtime, our benchmarking results show that our approaches can outperform current state-of-the-art static stability methods in terms of accuracy depending on the complexity scenario, but consume more runtime.</div></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"14 ","pages":"Article 100329"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716025000053","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cargo stability is a crucial requirement for safe cargo loading and transport. Current state-of-the-art approaches simplify cargo loading to an idealized static problem and employ geometric- and force-based approaches. In this research, we model cargo loading stability as a dynamic problem and propose two approaches. We use (a) a physical simulation using a real-time physics engine fitted for cargo loading and (b) a physics-informed learning model trained on cargo loading data. Both approaches are capable of handling dynamic physical behavior, either explicitly through simulation, or implicitly through training a recurrent neural network on physically-biased sequential cargo loading data. Given our two objectives of maximal accuracy and minimal runtime, our benchmarking results show that our approaches can outperform current state-of-the-art static stability methods in terms of accuracy depending on the complexity scenario, but consume more runtime.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Operations Research Perspectives
Operations Research Perspectives Mathematics-Statistics and Probability
CiteScore
6.40
自引率
0.00%
发文量
36
审稿时长
27 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信