Feiya Lv , Borui Yang , Shujian Yu , Shengwu Zou , Xiaolin Wang , Jinsong Zhao , Chenglin Wen
{"title":"A unified model integrating Granger causality-based causal discovery and fault diagnosis in chemical processes","authors":"Feiya Lv , Borui Yang , Shujian Yu , Shengwu Zou , Xiaolin Wang , Jinsong Zhao , Chenglin Wen","doi":"10.1016/j.compchemeng.2025.109028","DOIUrl":null,"url":null,"abstract":"<div><div>Reasoning about cause and effect in industrial processes is fundamental to fault diagnosis. However, traditional methods for causal discovery and fault diagnosis are typically developed separately, resulting in complex and fragmented approaches that lack transparency and interpretability. Since the explicit identification of root causes from causal graphs remains an open issue, we propose a unified diagnosis model for chemical processes that integrates causal discovery, fault detection, and root cause diagnosis within a single framework. Granger causality is learned from monitoring time-series data for online predictions. This causal embedding ensures that prediction deviations occur only in variables causally linked to the root cause, effectively mitigating the ’smearing effect’ caused by unrelated variables. The explicit causal graph provides interpretive insights into fault propagation and enhances the traceability of the diagnostic process by enabling the identification of fault evolution paths and root causes. Experimental results on synthetic data, a continuously stirred-tank reactor (CSTR) process, and a real-world continuous catalytic reforming (CCR) process demonstrate that our approach achieves high diagnostic accuracy and low false alarm rates, offering a practical, interpretable, and scalable solution for fault diagnosis in industrial chemical processes.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"196 ","pages":"Article 109028"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000328","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Reasoning about cause and effect in industrial processes is fundamental to fault diagnosis. However, traditional methods for causal discovery and fault diagnosis are typically developed separately, resulting in complex and fragmented approaches that lack transparency and interpretability. Since the explicit identification of root causes from causal graphs remains an open issue, we propose a unified diagnosis model for chemical processes that integrates causal discovery, fault detection, and root cause diagnosis within a single framework. Granger causality is learned from monitoring time-series data for online predictions. This causal embedding ensures that prediction deviations occur only in variables causally linked to the root cause, effectively mitigating the ’smearing effect’ caused by unrelated variables. The explicit causal graph provides interpretive insights into fault propagation and enhances the traceability of the diagnostic process by enabling the identification of fault evolution paths and root causes. Experimental results on synthetic data, a continuously stirred-tank reactor (CSTR) process, and a real-world continuous catalytic reforming (CCR) process demonstrate that our approach achieves high diagnostic accuracy and low false alarm rates, offering a practical, interpretable, and scalable solution for fault diagnosis in industrial chemical processes.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.