A deep learning-based approach with two-step minority classes prediction for intrusion detection in Internet of Things networks

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Salah Eddine Maoudj, Aissam Belghiat
{"title":"A deep learning-based approach with two-step minority classes prediction for intrusion detection in Internet of Things networks","authors":"Salah Eddine Maoudj,&nbsp;Aissam Belghiat","doi":"10.1016/j.knosys.2025.113143","DOIUrl":null,"url":null,"abstract":"<div><div>The rise of Internet of Things (IoT) technology has significantly enhanced several aspects of our modern life, from smart homes and cities to healthcare and industry. However, the distributed nature of IoT devices and the highly dynamic functioning of their environments introduce additional security challenges compared to conventional networks. Moreover, the datasets used to construct intrusion detection systems (IDS) are intrinsically imbalanced. Existing balancing techniques can address this issue with partially imbalanced datasets. However, their efficiency is limited when dealing with highly imbalanced datasets. As a result, the IDS delivers a humble performance that dissatisfies the IoT-based systems requirements. Therefore, novel approaches must be investigated to address this issue. In this paper, we propose a deep learning-based approach with two-step minority classes prediction to enhance intrusion detection in IoT networks. As our main model, we employ a one-dimensional convolutional neural network (1-D CNN), which predicts network traffic with a single output for the minority classes. Additionally, another 1-D CNN is trained on these minorities, but it only performs a second prediction if the first model classifies the output as the minority group. Furthermore, we utilize the class weight technique to achieve more balance in the models’ learning. We evaluated the proposed approach on the UNSW-NB15 and BoT-IoT datasets, two well-known benchmarks in building IDS for IoT networks. Compared to state-of-the-art methods, our approach revealed superior performance, achieving 80.65% and 99.99% accuracy in the multi-classification, respectively.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"312 ","pages":"Article 113143"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095070512500190X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of Internet of Things (IoT) technology has significantly enhanced several aspects of our modern life, from smart homes and cities to healthcare and industry. However, the distributed nature of IoT devices and the highly dynamic functioning of their environments introduce additional security challenges compared to conventional networks. Moreover, the datasets used to construct intrusion detection systems (IDS) are intrinsically imbalanced. Existing balancing techniques can address this issue with partially imbalanced datasets. However, their efficiency is limited when dealing with highly imbalanced datasets. As a result, the IDS delivers a humble performance that dissatisfies the IoT-based systems requirements. Therefore, novel approaches must be investigated to address this issue. In this paper, we propose a deep learning-based approach with two-step minority classes prediction to enhance intrusion detection in IoT networks. As our main model, we employ a one-dimensional convolutional neural network (1-D CNN), which predicts network traffic with a single output for the minority classes. Additionally, another 1-D CNN is trained on these minorities, but it only performs a second prediction if the first model classifies the output as the minority group. Furthermore, we utilize the class weight technique to achieve more balance in the models’ learning. We evaluated the proposed approach on the UNSW-NB15 and BoT-IoT datasets, two well-known benchmarks in building IDS for IoT networks. Compared to state-of-the-art methods, our approach revealed superior performance, achieving 80.65% and 99.99% accuracy in the multi-classification, respectively.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信