Pheromone-based graph embedding algorithm for Ethereum phishing detection

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Siyi Xiao , Lejun Zhang , Zhihong Tian , Shen Su , Jing Qiu , Ran Guo
{"title":"Pheromone-based graph embedding algorithm for Ethereum phishing detection","authors":"Siyi Xiao ,&nbsp;Lejun Zhang ,&nbsp;Zhihong Tian ,&nbsp;Shen Su ,&nbsp;Jing Qiu ,&nbsp;Ran Guo","doi":"10.1016/j.comnet.2025.111123","DOIUrl":null,"url":null,"abstract":"<div><div>Phishing scams pose significant risks to Ethereum, the second-largest blockchain-based cryptocurrency platform. Traditional methods for identifying phishing activities, such as machine learning and network representation learning, struggle to capture the temporal and repetitive transaction patterns inherent in Ethereum’s transaction network. To address these limitations, we propose a Pheromone-based Graph Embedding Algorithm (PGEA), which leverages pheromone mechanisms and a taboo list inspired by ant colony behavior to enhance subgraph sampling. This approach improves the identification of phishing activities by ensuring subgraph homogeneity and isomorphism during the sampling process. In our methodology, Ethereum transaction data is collected from known phishing addresses to construct a transaction network graph. The PGEA guides subgraph sampling, producing sequences that are transformed into node embeddings using word2vec. These embeddings are then classified using a Support Vector Machine (SVM) to distinguish between legitimate and malicious nodes. Experimental results demonstrate the superiority of our model over existing methods. PGEA achieves an accuracy of 87.18%, precision of 91.01%, recall of 84.82%, and F1 score of 86.91%, outperforming baseline approaches such as Deepwalk, Node2vec, and Graph2vec. These results highlight the efficacy of PGEA in detecting phishing addresses, contributing to a more secure Ethereum ecosystem.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"260 ","pages":"Article 111123"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138912862500091X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Phishing scams pose significant risks to Ethereum, the second-largest blockchain-based cryptocurrency platform. Traditional methods for identifying phishing activities, such as machine learning and network representation learning, struggle to capture the temporal and repetitive transaction patterns inherent in Ethereum’s transaction network. To address these limitations, we propose a Pheromone-based Graph Embedding Algorithm (PGEA), which leverages pheromone mechanisms and a taboo list inspired by ant colony behavior to enhance subgraph sampling. This approach improves the identification of phishing activities by ensuring subgraph homogeneity and isomorphism during the sampling process. In our methodology, Ethereum transaction data is collected from known phishing addresses to construct a transaction network graph. The PGEA guides subgraph sampling, producing sequences that are transformed into node embeddings using word2vec. These embeddings are then classified using a Support Vector Machine (SVM) to distinguish between legitimate and malicious nodes. Experimental results demonstrate the superiority of our model over existing methods. PGEA achieves an accuracy of 87.18%, precision of 91.01%, recall of 84.82%, and F1 score of 86.91%, outperforming baseline approaches such as Deepwalk, Node2vec, and Graph2vec. These results highlight the efficacy of PGEA in detecting phishing addresses, contributing to a more secure Ethereum ecosystem.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信