Non-central symmetric 2D bismuth‐based perovskites for piezoelectric-enhanced sonodynamic immunotherapy

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Luna Zhu, Qian Wang, Jun Du, Xueyu Li, Qingxuan Meng, Jiacheng Lu, Yuqing Miao, Yuhao Li
{"title":"Non-central symmetric 2D bismuth‐based perovskites for piezoelectric-enhanced sonodynamic immunotherapy","authors":"Luna Zhu,&nbsp;Qian Wang,&nbsp;Jun Du,&nbsp;Xueyu Li,&nbsp;Qingxuan Meng,&nbsp;Jiacheng Lu,&nbsp;Yuqing Miao,&nbsp;Yuhao Li","doi":"10.1016/j.jcis.2025.02.071","DOIUrl":null,"url":null,"abstract":"<div><div>Sonodynamic therapy (SDT), an emerging treatment modality, exhibits great potential in cancer therapy owing to its excellent tissue penetration, immune activation ability, and relatively low side effects. The lattice distortion of inorganic perovskite is challenging to control, which leads to an unsatisfactory SDT effect. This study presents a two-dimensional bismuth-based halide perovskite material, MA<sub>3</sub>Bi<sub>2</sub>Cl<sub>9</sub>-PEG (MBCP), with favorable piezoelectric properties, being first applied to tumor sonodynamic immunotherapy. By introducing methylamine cations, the central symmetry of MBC is effectively disrupted, resulting in a non-centrosymmetric crystal structure. This structural modification remarkably enhances the piezoelectric performance, enabling more robust charge separation effects under ultrasound excitation and thus facilitating the efficient generation of reactive oxygen species (ROS). Moreover, the generated ROS triggers immunogenic cell death in tumor cells, through the depletion of excessive glutathione and the inhibition of glutathione peroxidase 4, induces ferroptosis. The combined therapeutic strategy substantially enhances the anti-tumor efficacy and effectively suppresses lung metastasis. This research offers a promising example of the application of perovskite piezoelectric materials in sonodynamic immunotherapy.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"687 ","pages":"Pages 386-401"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725004254","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sonodynamic therapy (SDT), an emerging treatment modality, exhibits great potential in cancer therapy owing to its excellent tissue penetration, immune activation ability, and relatively low side effects. The lattice distortion of inorganic perovskite is challenging to control, which leads to an unsatisfactory SDT effect. This study presents a two-dimensional bismuth-based halide perovskite material, MA3Bi2Cl9-PEG (MBCP), with favorable piezoelectric properties, being first applied to tumor sonodynamic immunotherapy. By introducing methylamine cations, the central symmetry of MBC is effectively disrupted, resulting in a non-centrosymmetric crystal structure. This structural modification remarkably enhances the piezoelectric performance, enabling more robust charge separation effects under ultrasound excitation and thus facilitating the efficient generation of reactive oxygen species (ROS). Moreover, the generated ROS triggers immunogenic cell death in tumor cells, through the depletion of excessive glutathione and the inhibition of glutathione peroxidase 4, induces ferroptosis. The combined therapeutic strategy substantially enhances the anti-tumor efficacy and effectively suppresses lung metastasis. This research offers a promising example of the application of perovskite piezoelectric materials in sonodynamic immunotherapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信