{"title":"Nonvolatile electrical control of magnetism of monolayer C2N via carrier doping in a two dimensional heterostructure","authors":"Changwei Wu, Yun Xie, Weiping Gong","doi":"10.1016/j.jmmm.2025.172857","DOIUrl":null,"url":null,"abstract":"<div><div>Nonvolatile electrical control of magnetism in two-dimensional (2D) van der Walls heterostructure has sparked significant interest for both understanding the fundamental magnetoelectric physics and device application. Here, using the first-principles calculations, we propose a new multiferroic van der Waals (vdW) heterostructure <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>N</mi></mrow></math></span>/<span><math><mrow><msub><mrow><mi>In</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Se</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> based on C<sub>2</sub>N and ferroelectric (FE) In<sub>2</sub>Se<sub>3</sub> relying on no-transition metals. Upon electron doping, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>N</mi></mrow></math></span>/<span><math><mrow><msub><mrow><mi>In</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Se</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>-<span><math><mrow><mi>P</mi><mi>↓</mi></mrow></math></span> maintains nonmagnetic nature, but <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>N</mi></mrow></math></span>/<span><math><mrow><msub><mrow><mi>In</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Se</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>-<span><math><mrow><mi>P</mi><mi>↑</mi></mrow></math></span> changes into ferromagnetic state. Moreover, the magnetoelectric coupling is enhanced via engineering interlayer distance of <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>N</mi></mrow></math></span>/<span><math><mrow><msub><mrow><mi>In</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Se</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>. The magnetic moment of <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>N</mi></mrow></math></span>/<span><math><mrow><msub><mrow><mi>In</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Se</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>-<span><math><mrow><mi>P</mi><mi>↑</mi></mrow></math></span> reaches 1.0 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span>/e over the electron concentration ranging from 0.1 to 0.4 e per unit cell at an interlayer distance of 3.2 Å. Our results broaden the materials design space for 2D multiferroic materials.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"618 ","pages":"Article 172857"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885325000885","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonvolatile electrical control of magnetism in two-dimensional (2D) van der Walls heterostructure has sparked significant interest for both understanding the fundamental magnetoelectric physics and device application. Here, using the first-principles calculations, we propose a new multiferroic van der Waals (vdW) heterostructure / based on C2N and ferroelectric (FE) In2Se3 relying on no-transition metals. Upon electron doping, /- maintains nonmagnetic nature, but /- changes into ferromagnetic state. Moreover, the magnetoelectric coupling is enhanced via engineering interlayer distance of /. The magnetic moment of /- reaches 1.0 /e over the electron concentration ranging from 0.1 to 0.4 e per unit cell at an interlayer distance of 3.2 Å. Our results broaden the materials design space for 2D multiferroic materials.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.