Tingting Yan, Han Li, Dongyang Xi, Linan Liu, Dinghan Jin, Lei Sun
{"title":"Synthesis and pressure-induced structural phase transition of energetic molecular perovskite DAI-1","authors":"Tingting Yan, Han Li, Dongyang Xi, Linan Liu, Dinghan Jin, Lei Sun","doi":"10.1016/j.solidstatesciences.2025.107864","DOIUrl":null,"url":null,"abstract":"<div><div>We synthesized the energetic molecular perovskite DAI-1 (C<sub>48</sub>H<sub>112</sub>I<sub>24</sub>N<sub>16</sub>Na<sub>8</sub>O<sub>96</sub>) and investigated its behavior under high pressure using high-pressure Raman spectroscopy. DAI-1 exhibits an ABX<sub>3</sub> cubic perovskite structure, with significant changes in its Raman spectrum occurring between 4.3 and 7.1 GPa, signaling a phase transition. Releasing the pressure after applying it up to 12.3 GPa showed that the Raman spectrum did not return to its original state, indicating an irreversible phase transition. Furthermore, we conducted simulations to analyze the trend of changes in the crystal structure under pressure. This study serves as a reference for in-depth research on the high-pressure behavior of DAI-1 and other related substances.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"162 ","pages":"Article 107864"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255825000421","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
We synthesized the energetic molecular perovskite DAI-1 (C48H112I24N16Na8O96) and investigated its behavior under high pressure using high-pressure Raman spectroscopy. DAI-1 exhibits an ABX3 cubic perovskite structure, with significant changes in its Raman spectrum occurring between 4.3 and 7.1 GPa, signaling a phase transition. Releasing the pressure after applying it up to 12.3 GPa showed that the Raman spectrum did not return to its original state, indicating an irreversible phase transition. Furthermore, we conducted simulations to analyze the trend of changes in the crystal structure under pressure. This study serves as a reference for in-depth research on the high-pressure behavior of DAI-1 and other related substances.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.