Transcriptomic and metabolomic analyses provide insights into the energy metabolism and signaling regulation of byssus secretion in winged pearl oyster Pteria penguin
Yi Chen , Changqing Han , Huilong Ou , Hengda Chen , Yibing Liu , Xin Zhan
{"title":"Transcriptomic and metabolomic analyses provide insights into the energy metabolism and signaling regulation of byssus secretion in winged pearl oyster Pteria penguin","authors":"Yi Chen , Changqing Han , Huilong Ou , Hengda Chen , Yibing Liu , Xin Zhan","doi":"10.1016/j.cbd.2025.101446","DOIUrl":null,"url":null,"abstract":"<div><div>The winged pearl oyster <em>Pteria penguin</em> has the unique stout byssus in comparison with other pearl oysters. However, the mechanism of the byssus secretion in this species has not been largely investigated. This study applied transcriptomic and metabolomic techniques to elucidate this mechanism. The results showed that 3420 differentially expressed genes (DEGs) were identified which were enriched in glycolysis/gluconeogenesis, pentose phosphate pathway, TCA cycle, fatty acid metabolism, mTOR signaling pathway, FoxO signaling pathway and Notch signaling pathway. The metabolomic analysis revealed that 135 significantly different metabolites (SDMs) were identified with 23 pathways involved, including pentose phosphate pathway, glutathione metabolism and amino acid metabolism. Comprehensive analysis of transcriptome and metabolome indicated that glycogen, fatty acid metabolism and protein conversion could be used interchangeably as energy sources. Moreover, the glutathione metabolism and immune response demonstrated the importance of cellular homeostasis for byssus secretion in the winged pearl oyster. Dynamic expression of 5-hydroxytryptamine, dopamine receptors and adenylate cyclase suggested that the foot may regulate byssus secretion through an aminergic neurofeedback system which could translate information into neurochemical signals. In conclusion, this study provided insights into the energy metabolism and signaling regulation of byssus secretion in winged pearl oyster by the transcriptomic and metabolomic analyses.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"54 ","pages":"Article 101446"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X25000346","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The winged pearl oyster Pteria penguin has the unique stout byssus in comparison with other pearl oysters. However, the mechanism of the byssus secretion in this species has not been largely investigated. This study applied transcriptomic and metabolomic techniques to elucidate this mechanism. The results showed that 3420 differentially expressed genes (DEGs) were identified which were enriched in glycolysis/gluconeogenesis, pentose phosphate pathway, TCA cycle, fatty acid metabolism, mTOR signaling pathway, FoxO signaling pathway and Notch signaling pathway. The metabolomic analysis revealed that 135 significantly different metabolites (SDMs) were identified with 23 pathways involved, including pentose phosphate pathway, glutathione metabolism and amino acid metabolism. Comprehensive analysis of transcriptome and metabolome indicated that glycogen, fatty acid metabolism and protein conversion could be used interchangeably as energy sources. Moreover, the glutathione metabolism and immune response demonstrated the importance of cellular homeostasis for byssus secretion in the winged pearl oyster. Dynamic expression of 5-hydroxytryptamine, dopamine receptors and adenylate cyclase suggested that the foot may regulate byssus secretion through an aminergic neurofeedback system which could translate information into neurochemical signals. In conclusion, this study provided insights into the energy metabolism and signaling regulation of byssus secretion in winged pearl oyster by the transcriptomic and metabolomic analyses.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.