Inspired by “Focus, Fusion, Collaboration”: A multi-level ensemble network for automatic pneumonia diagnosis from full slice CT images

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Linna Zhao, Jianqiang Li, Qing Zhao, Xi Xu
{"title":"Inspired by “Focus, Fusion, Collaboration”: A multi-level ensemble network for automatic pneumonia diagnosis from full slice CT images","authors":"Linna Zhao,&nbsp;Jianqiang Li,&nbsp;Qing Zhao,&nbsp;Xi Xu","doi":"10.1016/j.eswa.2025.126806","DOIUrl":null,"url":null,"abstract":"<div><div>Pneumonia is an infectious disease that endangers human health. With advancements in science and technology, deep learning-driven techniques have gained prominence in this field. However, their applicability to clinical practice remains limited because they mostly neglect three key points: focus on local lesion regions, multi-level feature fusion, and sequential collaborative decision-making. In this paper, we present a novel multi-level ensemble network for automatic pneumonia diagnosis from full slice CT images, inspired by the “Focus, Fusion, Collaboration” strategy. Our proposed model involves three modules: the global–local feature extraction module is first designed to fully extract the global structure information and local lesion details; subsequently, the multi-level feature fusion module is responsible for integrating the above-mentioned global and local information; finally, the sequential pneumonia prediction module is utilized to learn the contextual relationship between the adjacent slices, thus generating the final diagnosis results. Building upon mimicking the diagnostic behavior from real-world clinical scenarios, our model enables the integration of multiple types of information (including global structure information, local lesion features, and slice dependencies) and sequential pneumonia diagnosis. Extensive comparative experiments are conducted to verify the feasibility and effectiveness of our proposed method. The experimental results show that our model can obtain an accuracy of 91.4% in a four-class pneumonia diagnosis task, outperforming the other classical works.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"273 ","pages":"Article 126806"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425004282","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Pneumonia is an infectious disease that endangers human health. With advancements in science and technology, deep learning-driven techniques have gained prominence in this field. However, their applicability to clinical practice remains limited because they mostly neglect three key points: focus on local lesion regions, multi-level feature fusion, and sequential collaborative decision-making. In this paper, we present a novel multi-level ensemble network for automatic pneumonia diagnosis from full slice CT images, inspired by the “Focus, Fusion, Collaboration” strategy. Our proposed model involves three modules: the global–local feature extraction module is first designed to fully extract the global structure information and local lesion details; subsequently, the multi-level feature fusion module is responsible for integrating the above-mentioned global and local information; finally, the sequential pneumonia prediction module is utilized to learn the contextual relationship between the adjacent slices, thus generating the final diagnosis results. Building upon mimicking the diagnostic behavior from real-world clinical scenarios, our model enables the integration of multiple types of information (including global structure information, local lesion features, and slice dependencies) and sequential pneumonia diagnosis. Extensive comparative experiments are conducted to verify the feasibility and effectiveness of our proposed method. The experimental results show that our model can obtain an accuracy of 91.4% in a four-class pneumonia diagnosis task, outperforming the other classical works.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信