Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin
{"title":"Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution","authors":"Xinyu Miao ,&nbsp;Hao Yang ,&nbsp;Jie He ,&nbsp;Jing Wang ,&nbsp;Zhiliang Jin","doi":"10.1016/j.actphy.2025.100051","DOIUrl":null,"url":null,"abstract":"<div><div>The sluggish electron migration rate and pronounced electron-hole recombination, pose significant obstacles to achieving high photocatalytic efficiency. The utilization of multiple catalysts for the construction of heterojunctions can effectively enhance charge separation. A series of Keggin-type hollow dodecahedral polyoxometalates were prepared <em>via</em> hydrothermal synthesis, and their molecular orbitals were modified through the addition of metal elements. The incorporation of metal elements modulated the electronic structure of polyoxometalates, effectively enhancing the electron aggregation capability of polyoxometalates. Single-component catalysts often face serious hole-electron recombination. In order to solve this problem, the scheme of constructing heterojunction is proposed to improve the electron transport efficiency. By immobilizing ZnCdS nanoparticles onto the polyoxometalate surface, the heterojunction architecture was engineered to significantly enhance the interfacial charge transfer capability. Density Functional Theory (DFT) calculations and the experimental results indicate that the modulation of metallic components renders the polyoxometalate a more favorable energy-level orbital. The catalytic mechanism of ZnCdS and KMoP S-scheme heterojunction was also verified. The formation of S-scheme heterojunctions further improves the electron transfer efficiency compared to other traditional heterojunctions, achieving efficient utilization of photo generated electrons and holes. Additionally, the S-scheme heterojunction shifts the catalystʼs <em>d</em>-band center closer to the Fermi level, thereby improving electrical conductivity. This article provides a new approach for energy level regulation of polyoxometalates and the design of S-scheme heterojunctions.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 6","pages":"Article 100051"},"PeriodicalIF":10.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000074","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The sluggish electron migration rate and pronounced electron-hole recombination, pose significant obstacles to achieving high photocatalytic efficiency. The utilization of multiple catalysts for the construction of heterojunctions can effectively enhance charge separation. A series of Keggin-type hollow dodecahedral polyoxometalates were prepared via hydrothermal synthesis, and their molecular orbitals were modified through the addition of metal elements. The incorporation of metal elements modulated the electronic structure of polyoxometalates, effectively enhancing the electron aggregation capability of polyoxometalates. Single-component catalysts often face serious hole-electron recombination. In order to solve this problem, the scheme of constructing heterojunction is proposed to improve the electron transport efficiency. By immobilizing ZnCdS nanoparticles onto the polyoxometalate surface, the heterojunction architecture was engineered to significantly enhance the interfacial charge transfer capability. Density Functional Theory (DFT) calculations and the experimental results indicate that the modulation of metallic components renders the polyoxometalate a more favorable energy-level orbital. The catalytic mechanism of ZnCdS and KMoP S-scheme heterojunction was also verified. The formation of S-scheme heterojunctions further improves the electron transfer efficiency compared to other traditional heterojunctions, achieving efficient utilization of photo generated electrons and holes. Additionally, the S-scheme heterojunction shifts the catalystʼs d-band center closer to the Fermi level, thereby improving electrical conductivity. This article provides a new approach for energy level regulation of polyoxometalates and the design of S-scheme heterojunctions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信