Higher-density river discharge observation through integration of multiple satellite data: Midstream Yellow River, China

IF 7.6 Q1 REMOTE SENSING
Qihang Liu , Yun Chen , João Paulo L.F. Brêda , Handi Cui , Hongtao Duan , Chang Huang
{"title":"Higher-density river discharge observation through integration of multiple satellite data: Midstream Yellow River, China","authors":"Qihang Liu ,&nbsp;Yun Chen ,&nbsp;João Paulo L.F. Brêda ,&nbsp;Handi Cui ,&nbsp;Hongtao Duan ,&nbsp;Chang Huang","doi":"10.1016/j.jag.2025.104433","DOIUrl":null,"url":null,"abstract":"<div><div>Silty Midstream Yellow River (MYR), characterized by its turbid waters, is currently underserved by a sparse network of gauging stations, which is insufficient for comprehensive flow monitoring. Establishing an extensive gauging network in this region is almost impractical. This study addresses the challenge by estimating discharge at selected ungauged reaches of the MYR, leveraging multiple remote sensing datasets with high spatiotemporal resolutions, complemented by Manning’s Equation. Satellite observation reaches (SORs) were strategically positioned at each small river section between adjacent tributaries, chosen for their variable river width, stable channel terrain, and uniform flow, which are conducive to the application of Manning’s Equation. Hydraulic parameters for 16 SORs were calculated, integrating optical and Synthetic Aperture Radar data with a digital elevation model to derive river width, water surface level, and slope. River bathymetry and bed elevation, not directly observable by satellites, were simulated using an adapted altimetry-assimilated one-dimensional (1D) hydraulic model. The discharge time-series at the SOR locations was subsequently retrieved and validated against observed discharges at existing gauges, demonstrating high accuracy with Nash-Sutcliffe Efficiency values ranging from 0.704 to 0.779 and R<sup>2</sup> values from 0.773 to 0.925. This study effectively expanded discharge observations at ungauged river reaches, increasing the number of observation sites from three to sixteen and achieving an average monitoring interval of 2.7 days per site. The enhanced river discharge observations facilitated by remote sensing provides more granular water and sediment flux data, which is instrumental for future hydrological research and soil conservation planning within large river basins.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"137 ","pages":"Article 104433"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225000809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Silty Midstream Yellow River (MYR), characterized by its turbid waters, is currently underserved by a sparse network of gauging stations, which is insufficient for comprehensive flow monitoring. Establishing an extensive gauging network in this region is almost impractical. This study addresses the challenge by estimating discharge at selected ungauged reaches of the MYR, leveraging multiple remote sensing datasets with high spatiotemporal resolutions, complemented by Manning’s Equation. Satellite observation reaches (SORs) were strategically positioned at each small river section between adjacent tributaries, chosen for their variable river width, stable channel terrain, and uniform flow, which are conducive to the application of Manning’s Equation. Hydraulic parameters for 16 SORs were calculated, integrating optical and Synthetic Aperture Radar data with a digital elevation model to derive river width, water surface level, and slope. River bathymetry and bed elevation, not directly observable by satellites, were simulated using an adapted altimetry-assimilated one-dimensional (1D) hydraulic model. The discharge time-series at the SOR locations was subsequently retrieved and validated against observed discharges at existing gauges, demonstrating high accuracy with Nash-Sutcliffe Efficiency values ranging from 0.704 to 0.779 and R2 values from 0.773 to 0.925. This study effectively expanded discharge observations at ungauged river reaches, increasing the number of observation sites from three to sixteen and achieving an average monitoring interval of 2.7 days per site. The enhanced river discharge observations facilitated by remote sensing provides more granular water and sediment flux data, which is instrumental for future hydrological research and soil conservation planning within large river basins.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信