A novel approach to retrieving the surface soil freeze/thaw state in the Qinghai-Tibetan Plateau using the seasonality of CYGNSS time series

IF 7.6 Q1 REMOTE SENSING
Qi Liu , Shuangcheng Zhang , Zhongmin Ma , Xin Zhou , Tao Wang
{"title":"A novel approach to retrieving the surface soil freeze/thaw state in the Qinghai-Tibetan Plateau using the seasonality of CYGNSS time series","authors":"Qi Liu ,&nbsp;Shuangcheng Zhang ,&nbsp;Zhongmin Ma ,&nbsp;Xin Zhou ,&nbsp;Tao Wang","doi":"10.1016/j.jag.2025.104428","DOIUrl":null,"url":null,"abstract":"<div><div>Soil freeze–thaw (F/T) processes are a typical physical phenomenon on the Qinghai-Tibetan Plateau (QTP), significantly impacting regional climate change and the hydrological cycle. This study presents a Seasonal-Trend Decomposition using Loess and Long Short-Term Memory (STL-LSTM) method to detect spatiotemporal variations in soil F/T on the QTP using time series data from the Cyclone Global Navigation Satellite System (CYGNSS). The model was validated against ERA5 soil temperature data (0–7 cm) and independent in-situ observations, demonstrating good consistency. The SHapley Additive exPlanations (SHAP) model was integrated into the STL-LSTM framework to quantitatively evaluate the contributions of input features to F/T retrieval, revealing that time features contributes the most to retrieval results, followed by surface reflectivity. Moreover, spatiotemporal analysis of QTP F/T dynamics shows prominent seasonal patterns, with topography-induced shielding delaying thawing in central QTP regions and freezing trends extending from low (28°N) to high latitudes (36°N). The proposed method offers a new pathway for monitoring freeze–thaw transitions in high-latitude regions and holds potential for expansion into future high-frequency and multi-polarization GNSS-R missions.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"137 ","pages":"Article 104428"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225000755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Soil freeze–thaw (F/T) processes are a typical physical phenomenon on the Qinghai-Tibetan Plateau (QTP), significantly impacting regional climate change and the hydrological cycle. This study presents a Seasonal-Trend Decomposition using Loess and Long Short-Term Memory (STL-LSTM) method to detect spatiotemporal variations in soil F/T on the QTP using time series data from the Cyclone Global Navigation Satellite System (CYGNSS). The model was validated against ERA5 soil temperature data (0–7 cm) and independent in-situ observations, demonstrating good consistency. The SHapley Additive exPlanations (SHAP) model was integrated into the STL-LSTM framework to quantitatively evaluate the contributions of input features to F/T retrieval, revealing that time features contributes the most to retrieval results, followed by surface reflectivity. Moreover, spatiotemporal analysis of QTP F/T dynamics shows prominent seasonal patterns, with topography-induced shielding delaying thawing in central QTP regions and freezing trends extending from low (28°N) to high latitudes (36°N). The proposed method offers a new pathway for monitoring freeze–thaw transitions in high-latitude regions and holds potential for expansion into future high-frequency and multi-polarization GNSS-R missions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信