Carbon sequestration law by phytoliths in the bamboo forests: Insights for the management of phytolith carbon sink

IF 3.5 2区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Li Liu, Linjiao Wang, Lukang Song, Maoyin Sheng
{"title":"Carbon sequestration law by phytoliths in the bamboo forests: Insights for the management of phytolith carbon sink","authors":"Li Liu,&nbsp;Linjiao Wang,&nbsp;Lukang Song,&nbsp;Maoyin Sheng","doi":"10.1016/j.gecco.2025.e03491","DOIUrl":null,"url":null,"abstract":"<div><div>Phytolith-occluded organic carbon (PhytOC) plays a crucial role as a stable and enduring carbon sink in the intricate web of terrestrial ecosystems. Bamboo forests exhibit the most prominent ability of phytolith carbon sequestration among terrestrial vegetation. This study systematically investigated the complex dynamics of phytolith carbon sequestration and accumulation in different organs (leaves, branches, culms, and roots) of <em>P. edulis</em> and <em>B. emeiensis</em> forests across three growth stages (young, middle-aged, and mature) in shale and limestone regions of southwest China. The results unveiled the spectrum of PhytOC content, storage, and sequestration rate within the <em>P. edulis</em> forests, ranging from 0.24 to 10.51 g·kg<sup>−1</sup>, 0.62–35.72 kg·hm<sup>−2</sup>, and 0.75–61.06 kg·CO<sub>2</sub>·hm<sup>−2</sup>·a<sup>−1</sup>, respectively. On the other hand, the <em>B. emeiensis</em> forests exhibited a wider range, with PhytOC content varying from 0.33 to 20.59 g·kg<sup>−1</sup>, storage from 0.25 to 102.81 kg·hm<sup>−2</sup>, and sequestration rate from 0.90 to 75.39 kg·CO<sub>2</sub>·hm<sup>−2</sup>·a<sup>−1</sup>. The differences in phytolith carbon sequestration were significant or extremely remarkable across forest species, ages, organs, and bedrock types. Roots play a major role in the phytolith carbon sequestration of bamboo forests. The root PhytOC sequestration rate of <em>P. edulis</em> and <em>B. emeiensis</em> is 30.67 and 12.69 kg·CO<sub>2</sub>·hm<sup>−2</sup>·a<sup>−1</sup>, respectively. Forest age and bedrock both have a significant impact on the phytolith carbon sequestration of bamboo forests. Both soil physicochemical properties and forest community structures are closely related to phytolith carbon sequestration and accumulation in the bamboo forests, which are great of significance in the artificial intervention for increasing the phytolith carbon sink.</div></div>","PeriodicalId":54264,"journal":{"name":"Global Ecology and Conservation","volume":"58 ","pages":"Article e03491"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2351989425000927","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Phytolith-occluded organic carbon (PhytOC) plays a crucial role as a stable and enduring carbon sink in the intricate web of terrestrial ecosystems. Bamboo forests exhibit the most prominent ability of phytolith carbon sequestration among terrestrial vegetation. This study systematically investigated the complex dynamics of phytolith carbon sequestration and accumulation in different organs (leaves, branches, culms, and roots) of P. edulis and B. emeiensis forests across three growth stages (young, middle-aged, and mature) in shale and limestone regions of southwest China. The results unveiled the spectrum of PhytOC content, storage, and sequestration rate within the P. edulis forests, ranging from 0.24 to 10.51 g·kg−1, 0.62–35.72 kg·hm−2, and 0.75–61.06 kg·CO2·hm−2·a−1, respectively. On the other hand, the B. emeiensis forests exhibited a wider range, with PhytOC content varying from 0.33 to 20.59 g·kg−1, storage from 0.25 to 102.81 kg·hm−2, and sequestration rate from 0.90 to 75.39 kg·CO2·hm−2·a−1. The differences in phytolith carbon sequestration were significant or extremely remarkable across forest species, ages, organs, and bedrock types. Roots play a major role in the phytolith carbon sequestration of bamboo forests. The root PhytOC sequestration rate of P. edulis and B. emeiensis is 30.67 and 12.69 kg·CO2·hm−2·a−1, respectively. Forest age and bedrock both have a significant impact on the phytolith carbon sequestration of bamboo forests. Both soil physicochemical properties and forest community structures are closely related to phytolith carbon sequestration and accumulation in the bamboo forests, which are great of significance in the artificial intervention for increasing the phytolith carbon sink.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Ecology and Conservation
Global Ecology and Conservation Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.10
自引率
5.00%
发文量
346
审稿时长
83 days
期刊介绍: Global Ecology and Conservation is a peer-reviewed, open-access journal covering all sub-disciplines of ecological and conservation science: from theory to practice, from molecules to ecosystems, from regional to global. The fields covered include: organismal, population, community, and ecosystem ecology; physiological, evolutionary, and behavioral ecology; and conservation science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信