Derivation of design S-N curves for butt welds in support structures for wind turbines

IF 4 2区 工程技术 Q1 ENGINEERING, CIVIL
Inge Lotsberg
{"title":"Derivation of design S-N curves for butt welds in support structures for wind turbines","authors":"Inge Lotsberg","doi":"10.1016/j.marstruc.2025.103795","DOIUrl":null,"url":null,"abstract":"<div><div>The fatigue life of welded connections in structures is normally calculated from bi-linear S-N curves presented in design standards, one part S-N curve for the largest stress ranges that can be determined from constant amplitude testing to the left of the fatigue limit and one part S-N curve for stress ranges lower than the fatigue limit that can be determined from variable amplitude fatigue testing. The second curve is governing the calculated fatigue damage for typical long-term stress distributions for marine structures subjected to cyclic loads from wind and waves. In this study fracture mechanics analyses are performed in a relative way to reduce much of the uncertainties present in such analyses to estimate a second part of the S-N curve as function of fatigue crack growth parameters, threshold stress intensity factor, geometry functions and the long-term stress range distribution. The analysis methodology is calibrated to fatigue test data from constant amplitude loading. Based on the performed analyses it is shown that the second part of the design S-N curve for as-welded butt welds can be lifted to a higher level than presented in design standards of today. For structures supporting wind turbines where the Fatigue Limit State is governing design, this may result in reduction in steel weight as compared with existing design S-N curves in standards. This information may also be useful for lifetime extension of existing structures.</div></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"102 ","pages":"Article 103795"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095183392500019X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The fatigue life of welded connections in structures is normally calculated from bi-linear S-N curves presented in design standards, one part S-N curve for the largest stress ranges that can be determined from constant amplitude testing to the left of the fatigue limit and one part S-N curve for stress ranges lower than the fatigue limit that can be determined from variable amplitude fatigue testing. The second curve is governing the calculated fatigue damage for typical long-term stress distributions for marine structures subjected to cyclic loads from wind and waves. In this study fracture mechanics analyses are performed in a relative way to reduce much of the uncertainties present in such analyses to estimate a second part of the S-N curve as function of fatigue crack growth parameters, threshold stress intensity factor, geometry functions and the long-term stress range distribution. The analysis methodology is calibrated to fatigue test data from constant amplitude loading. Based on the performed analyses it is shown that the second part of the design S-N curve for as-welded butt welds can be lifted to a higher level than presented in design standards of today. For structures supporting wind turbines where the Fatigue Limit State is governing design, this may result in reduction in steel weight as compared with existing design S-N curves in standards. This information may also be useful for lifetime extension of existing structures.
风力涡轮机支撑结构对接焊缝设计 S-N 曲线的推导
结构焊接接头的疲劳寿命通常采用设计标准中给出的双线S-N曲线计算,其中一部分S-N曲线表示最大应力范围,可通过恒幅试验确定在疲劳极限左侧,另一部分S-N曲线表示低于疲劳极限的应力范围,可通过变幅疲劳试验确定。第二条曲线用于控制海洋结构在风浪循环荷载作用下典型长期应力分布的疲劳损伤计算。在本研究中,断裂力学分析以一种相对的方式进行,以减少这种分析中存在的许多不确定性,以估计S-N曲线的第二部分作为疲劳裂纹扩展参数、阈值应力强度因子、几何函数和长期应力范围分布的函数。分析方法是根据恒幅载荷的疲劳试验数据进行校准的。分析结果表明,焊态对接焊缝设计S-N曲线的第二部分可以提高到比现行设计标准更高的水平。对于支持风力涡轮机的结构,疲劳极限状态是控制设计的,与标准中现有的设计S-N曲线相比,这可能导致钢重量的减少。这些信息对现有结构的寿命延长也可能有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Structures
Marine Structures 工程技术-工程:海洋
CiteScore
8.70
自引率
7.70%
发文量
157
审稿时长
6.4 months
期刊介绍: This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信