Carmen Domene*, Brian Wiley, Saul Gonzalez-Resines and Richard J. Naftalin*,
{"title":"Insight into the Mechanism of d-Glucose Accelerated Exchange in GLUT1 from Molecular Dynamics Simulations","authors":"Carmen Domene*, Brian Wiley, Saul Gonzalez-Resines and Richard J. Naftalin*, ","doi":"10.1021/acs.biochem.4c0050210.1021/acs.biochem.4c00502","DOIUrl":null,"url":null,"abstract":"<p >Transmembrane glucose transport, facilitated by glucose transporters (GLUTs), is commonly understood through the simple mobile carrier model (SMCM), which suggests that the central binding site alternates exposure between the inside and outside of the cell, facilitating glucose exchange. An alternative “multisite model” posits that glucose transport is a stochastic diffusion process between ligand-operated gates within the transporter’s central channel. This study aims to test these models by conducting atomistic molecular dynamics simulations of multiple glucose molecules docked along the central cleft of GLUT1 at temperatures both above and below the lipid bilayer melting point. Our results show that glucose exchanges occur on a nanosecond time-scale as glucopyranose rings slide past each other within the channel cavities, with minimal protein conformational movement. While bilayer gelation slows net glucose transit, the frequency of positional exchanges remains consistent across both temperatures. This supports the observation that glucose exchange at 0 °C is much faster than net flux, aligning with experimental data that show approximately 100 times the rate of exchange flux relative to net flux at 0 °C compared to 37 °C.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":"64 4","pages":"928–939 928–939"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.biochem.4c00502","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00502","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transmembrane glucose transport, facilitated by glucose transporters (GLUTs), is commonly understood through the simple mobile carrier model (SMCM), which suggests that the central binding site alternates exposure between the inside and outside of the cell, facilitating glucose exchange. An alternative “multisite model” posits that glucose transport is a stochastic diffusion process between ligand-operated gates within the transporter’s central channel. This study aims to test these models by conducting atomistic molecular dynamics simulations of multiple glucose molecules docked along the central cleft of GLUT1 at temperatures both above and below the lipid bilayer melting point. Our results show that glucose exchanges occur on a nanosecond time-scale as glucopyranose rings slide past each other within the channel cavities, with minimal protein conformational movement. While bilayer gelation slows net glucose transit, the frequency of positional exchanges remains consistent across both temperatures. This supports the observation that glucose exchange at 0 °C is much faster than net flux, aligning with experimental data that show approximately 100 times the rate of exchange flux relative to net flux at 0 °C compared to 37 °C.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.