{"title":"Transcription Regulation of Flagellins: A Structural Perspective","authors":"Sheenu, and , Deepti Jain*, ","doi":"10.1021/acs.biochem.4c0079110.1021/acs.biochem.4c00791","DOIUrl":null,"url":null,"abstract":"<p >Bacterial flagella are complex molecular motors that are essential for locomotion and host colonization. They consist of 30 different proteins expressed in varying stoichiometries. Their assembly and function are governed by a hierarchical transcriptional regulatory network with multiple checkpoints primarily regulated by sigma factors. Expression of late flagellar genes requires the complete assembly of the flagellar basal body and hook. The extracellular segment of the flagellum, termed filament, is composed of self-assembling flagellin subunits encoded by the <i>fliC</i> gene and harbors potent antigenic epitopes. Structural studies have illuminated the molecular mechanisms underlying its assembly and its regulation at the transcription level. σ<sup>28</sup>, a key subunit of the RNA polymerase complex, binds to specific promoter sequences to initiate transcription of late flagellar genes, while its activity is controlled by the antisigma factor FlgM. This review summarizes current insights into the structural characterization of flagellins across various bacterial species, their transcription by σ<sup>28</sup>, and the structural mechanism controlling σ<sup>28</sup> activity through FlgM. Additionally, we highlight the regulation of flagellin gene expression via transcription factors and their post-transcriptional regulation, providing a comprehensive overview of the intricate mechanisms that support bacterial motility and adaptation.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":"64 4","pages":"770–781 770–781"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00791","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial flagella are complex molecular motors that are essential for locomotion and host colonization. They consist of 30 different proteins expressed in varying stoichiometries. Their assembly and function are governed by a hierarchical transcriptional regulatory network with multiple checkpoints primarily regulated by sigma factors. Expression of late flagellar genes requires the complete assembly of the flagellar basal body and hook. The extracellular segment of the flagellum, termed filament, is composed of self-assembling flagellin subunits encoded by the fliC gene and harbors potent antigenic epitopes. Structural studies have illuminated the molecular mechanisms underlying its assembly and its regulation at the transcription level. σ28, a key subunit of the RNA polymerase complex, binds to specific promoter sequences to initiate transcription of late flagellar genes, while its activity is controlled by the antisigma factor FlgM. This review summarizes current insights into the structural characterization of flagellins across various bacterial species, their transcription by σ28, and the structural mechanism controlling σ28 activity through FlgM. Additionally, we highlight the regulation of flagellin gene expression via transcription factors and their post-transcriptional regulation, providing a comprehensive overview of the intricate mechanisms that support bacterial motility and adaptation.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.