{"title":"Interior point methods in the year 2025","authors":"Jacek Gondzio","doi":"10.1016/j.ejco.2025.100105","DOIUrl":null,"url":null,"abstract":"<div><div>Interior point methods (IPMs) have hugely influenced the field of optimization. Their fast development has been triggered by the seminal paper of Narendra Karmarkar published in 1984 which delivered a polynomial algorithm for linear programming and suggested that it might be implemented into a very efficient method in practice. Indeed, this has been demonstrated within a few years after 1984 and has gained IPMs a status of exceptionally powerful optimization tool. Linear Programming (LP) is at the centre of many operational research techniques including mixed-integer programming, network optimization and various decomposition techniques. Therefore, any progress in LP has far-reaching consequences. IPMs certainly did not disappoint in this context: they have become a heavily used methodology in modern optimization and operational research. Their accuracy, efficiency and reliability have been particularly appreciated when IPMs are applied to truly large scale problems which challenge any alternative approaches.</div><div>In this survey we will discuss several issues related to interior point methods. We will recall techniques which provide the building blocks of IPMs, and observe that actually at least some of them have been developed before 1984. We will briefly comment on the worst-case complexity results for different variants of IPMs and then focus on key aspects of their implementation. We will also address some of the most spectacular features of IPMs and discuss their potential advantages when applied in decomposition algorithms, cutting planes scheme and column generation technique.</div></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"13 ","pages":"Article 100105"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440625000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Interior point methods (IPMs) have hugely influenced the field of optimization. Their fast development has been triggered by the seminal paper of Narendra Karmarkar published in 1984 which delivered a polynomial algorithm for linear programming and suggested that it might be implemented into a very efficient method in practice. Indeed, this has been demonstrated within a few years after 1984 and has gained IPMs a status of exceptionally powerful optimization tool. Linear Programming (LP) is at the centre of many operational research techniques including mixed-integer programming, network optimization and various decomposition techniques. Therefore, any progress in LP has far-reaching consequences. IPMs certainly did not disappoint in this context: they have become a heavily used methodology in modern optimization and operational research. Their accuracy, efficiency and reliability have been particularly appreciated when IPMs are applied to truly large scale problems which challenge any alternative approaches.
In this survey we will discuss several issues related to interior point methods. We will recall techniques which provide the building blocks of IPMs, and observe that actually at least some of them have been developed before 1984. We will briefly comment on the worst-case complexity results for different variants of IPMs and then focus on key aspects of their implementation. We will also address some of the most spectacular features of IPMs and discuss their potential advantages when applied in decomposition algorithms, cutting planes scheme and column generation technique.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.