Solubility determination, correlation, solvent effect and thermodynamic properties of tolnaftate in ten mono-solvents and binary solvent systems from 283.15 K to 328.15 K

IF 2.2 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Kejia Wang , Wei Zhang , Yuanmo Ren , Ting Li , Shiyu Lin , Funeng Xu , Haohuan Li , Xianxiang Wang , Huaqiao Tang , Gang Shu , Juchun Lin , Xiaoyang Ai , Hualin Fu
{"title":"Solubility determination, correlation, solvent effect and thermodynamic properties of tolnaftate in ten mono-solvents and binary solvent systems from 283.15 K to 328.15 K","authors":"Kejia Wang ,&nbsp;Wei Zhang ,&nbsp;Yuanmo Ren ,&nbsp;Ting Li ,&nbsp;Shiyu Lin ,&nbsp;Funeng Xu ,&nbsp;Haohuan Li ,&nbsp;Xianxiang Wang ,&nbsp;Huaqiao Tang ,&nbsp;Gang Shu ,&nbsp;Juchun Lin ,&nbsp;Xiaoyang Ai ,&nbsp;Hualin Fu","doi":"10.1016/j.jct.2025.107468","DOIUrl":null,"url":null,"abstract":"<div><div>Tolnaftate (TNF) is a local antifungal agent. The determination of its solubility can serve as a valuable reference for its crystallization and formulation design, an area that has not yet been comprehensively investigated. In this study, the static method was carried out to determine the solubility of TNF in 10 mono-solvents (methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-octanol, 1,2-propanediol, ethylene glycol, acetic acid) and the binary mixed solvents (acetic acid + ethylene glycol) at T = (283.15 to 328.15) K and <em>P</em> = 0.1 MPa. The experiment results showed that TNF dissolves best in acetic acid and worst in ethylene glycol among investigated mono-solvents. And the solubility in mixed solvents was observed to increase as the mole ratio of acetic acid augments. In all solvents, there is obviously increase in the solubility of TNF as temperature elevates. The Apelblat model, van't Hoff model, Jouyban model, GCM model, Sun model and Apelblat-Jouyban-Acree model were used to fit the solubility values. And the root mean square deviation (RMSD) between the calculated values and experimental values are less than 0.025 %, showing that the experimental values are accurate and the models have good fitting effects. At the same time, X-ray powder diffraction (PXRD) tests confirmed that the absence of crystal transformation during the process of TNF dissolution. In addition, according to the KAT-LSER model, the influence of solute-solvent interactions on the solubility of TNF exceeds that of solvent-solvent interactions. The thermodynamic properties including entropy (Δ<em>H</em><sup>0</sup><sub>sol</sub>), enthalpy (Δ<em>S</em><sup>0</sup><sub>sol</sub>), Gibbs free energy (Δ<em>G</em><sup>0</sup><sub>sol</sub>), enthalpy contribution (%ξ<sub>H</sub>) and entropy contribution (%ξ<sub>S</sub>) were calculated, which proved that dissolution process of TNF is endothermic and entropy-driven, and enthalpy mainly affects Gibbs free energy.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"205 ","pages":"Article 107468"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961425000229","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tolnaftate (TNF) is a local antifungal agent. The determination of its solubility can serve as a valuable reference for its crystallization and formulation design, an area that has not yet been comprehensively investigated. In this study, the static method was carried out to determine the solubility of TNF in 10 mono-solvents (methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-octanol, 1,2-propanediol, ethylene glycol, acetic acid) and the binary mixed solvents (acetic acid + ethylene glycol) at T = (283.15 to 328.15) K and P = 0.1 MPa. The experiment results showed that TNF dissolves best in acetic acid and worst in ethylene glycol among investigated mono-solvents. And the solubility in mixed solvents was observed to increase as the mole ratio of acetic acid augments. In all solvents, there is obviously increase in the solubility of TNF as temperature elevates. The Apelblat model, van't Hoff model, Jouyban model, GCM model, Sun model and Apelblat-Jouyban-Acree model were used to fit the solubility values. And the root mean square deviation (RMSD) between the calculated values and experimental values are less than 0.025 %, showing that the experimental values are accurate and the models have good fitting effects. At the same time, X-ray powder diffraction (PXRD) tests confirmed that the absence of crystal transformation during the process of TNF dissolution. In addition, according to the KAT-LSER model, the influence of solute-solvent interactions on the solubility of TNF exceeds that of solvent-solvent interactions. The thermodynamic properties including entropy (ΔH0sol), enthalpy (ΔS0sol), Gibbs free energy (ΔG0sol), enthalpy contribution (%ξH) and entropy contribution (%ξS) were calculated, which proved that dissolution process of TNF is endothermic and entropy-driven, and enthalpy mainly affects Gibbs free energy.

Abstract Image

甲苯酰萘酸在283.15 ~ 328.15 K范围内十种单溶剂和二元溶剂体系中的溶解度测定、相关性、溶剂效应和热力学性质
TNF是一种局部抗真菌药物。其溶解度的测定可以为其结晶和配方设计提供有价值的参考,这一领域尚未得到全面的研究。本研究采用静态法测定了TNF在10种单溶剂(甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、正辛醇、1,2-丙二醇、乙二醇、乙酸)和二元混合溶剂(乙酸+乙二醇)中的溶解度,条件为T = (283.15 ~ 328.15) K, P = 0.1 MPa。实验结果表明,在所研究的单溶剂中,TNF在乙酸中的溶解性最好,在乙二醇中的溶解性最差。在混合溶剂中的溶解度随着乙酸摩尔比的增大而增大。在所有溶剂中,TNF的溶解度随温度升高而明显增加。采用Apelblat模型、van't Hoff模型、Jouyban模型、GCM模型、Sun模型和Apelblat-Jouyban- acree模型拟合溶解度值。计算值与实验值的均方根偏差(RMSD)小于0.025%,表明实验值准确,模型拟合效果良好。同时,x射线粉末衍射(PXRD)测试证实了TNF溶解过程中没有发生晶体转变。此外,根据KAT-LSER模型,溶质-溶剂相互作用对TNF溶解度的影响超过了溶剂-溶剂相互作用。计算了其热力学性质,包括熵(ΔH0sol)、焓(ΔS0sol)、吉布斯自由能(ΔG0sol)、焓贡献(%ξH)和熵贡献(%ξS),证明了TNF的溶解过程是吸热的、熵驱动的,其中焓主要影响吉布斯自由能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Thermodynamics
Journal of Chemical Thermodynamics 工程技术-热力学
CiteScore
5.60
自引率
15.40%
发文量
199
审稿时长
79 days
期刊介绍: The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published. The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed. Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered. The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review. Contributions of a routine nature or reporting on uncharacterised materials are not accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信