Adaptive manufacturing control with Deep Reinforcement Learning for dynamic WIP management in industry 4.0

IF 6.7 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Silvestro Vespoli, Giulio Mattera, Maria Grazia Marchesano, Luigi Nele, Guido Guizzi
{"title":"Adaptive manufacturing control with Deep Reinforcement Learning for dynamic WIP management in industry 4.0","authors":"Silvestro Vespoli,&nbsp;Giulio Mattera,&nbsp;Maria Grazia Marchesano,&nbsp;Luigi Nele,&nbsp;Guido Guizzi","doi":"10.1016/j.cie.2025.110966","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of Industry 4.0, manufacturing systems face increased complexity and uncertainty due to elevated product customisation and demand variability. This paper presents a novel framework for adaptive Work-In-Progress (WIP) control in semi-heterarchical architectures, addressing the limitations of traditional analytical methods that rely on exponential processing time distributions. Integrating Deep Reinforcement Learning (DRL) with Discrete Event Simulation (DES) enables model-free control of flow-shop production systems under non-exponential, stochastic processing times. A Deep Q-Network (DQN) agent dynamically manages WIP levels in a CONstant Work In Progress (CONWIP) environment, learning optimal control policies directly from system interactions. The framework’s effectiveness is demonstrated through extensive experiments with varying machine numbers, processing times, and system variability. The results show robust performance in tracking the target throughput and adapting the processing time variability, achieving Mean Absolute Percentual Errors (MAPE) in the throughput – calculated as the percentage difference between the actual and the target throughput – ranging from 0.3% to 2.3% with standard deviations of 5. 5% to 8. 4%. Key contributions include the development of a data-driven WIP control approach to overcome analytical methods’ limitations in stochastic environments, validating DQN agent adaptability across varying production scenarios, and demonstrating framework scalability in realistic manufacturing settings. This research bridges the gap between conventional WIP control methods and Industry 4.0 requirements, offering manufacturers an adaptive solution for enhanced production efficiency.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"202 ","pages":"Article 110966"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835225001123","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of Industry 4.0, manufacturing systems face increased complexity and uncertainty due to elevated product customisation and demand variability. This paper presents a novel framework for adaptive Work-In-Progress (WIP) control in semi-heterarchical architectures, addressing the limitations of traditional analytical methods that rely on exponential processing time distributions. Integrating Deep Reinforcement Learning (DRL) with Discrete Event Simulation (DES) enables model-free control of flow-shop production systems under non-exponential, stochastic processing times. A Deep Q-Network (DQN) agent dynamically manages WIP levels in a CONstant Work In Progress (CONWIP) environment, learning optimal control policies directly from system interactions. The framework’s effectiveness is demonstrated through extensive experiments with varying machine numbers, processing times, and system variability. The results show robust performance in tracking the target throughput and adapting the processing time variability, achieving Mean Absolute Percentual Errors (MAPE) in the throughput – calculated as the percentage difference between the actual and the target throughput – ranging from 0.3% to 2.3% with standard deviations of 5. 5% to 8. 4%. Key contributions include the development of a data-driven WIP control approach to overcome analytical methods’ limitations in stochastic environments, validating DQN agent adaptability across varying production scenarios, and demonstrating framework scalability in realistic manufacturing settings. This research bridges the gap between conventional WIP control methods and Industry 4.0 requirements, offering manufacturers an adaptive solution for enhanced production efficiency.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Industrial Engineering
Computers & Industrial Engineering 工程技术-工程:工业
CiteScore
12.70
自引率
12.70%
发文量
794
审稿时长
10.6 months
期刊介绍: Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信