A privacy-preserving certificate-less aggregate signature scheme with detectable invalid signatures for VANETs

IF 3.8 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaoliang Wang , Peng Zeng , Guikai Liu , Kuan-Ching Li , Yuzhen Liu , Biao Hu , Francesco Palmieri
{"title":"A privacy-preserving certificate-less aggregate signature scheme with detectable invalid signatures for VANETs","authors":"Xiaoliang Wang ,&nbsp;Peng Zeng ,&nbsp;Guikai Liu ,&nbsp;Kuan-Ching Li ,&nbsp;Yuzhen Liu ,&nbsp;Biao Hu ,&nbsp;Francesco Palmieri","doi":"10.1016/j.jisa.2025.104001","DOIUrl":null,"url":null,"abstract":"<div><div>Vehicular Ad-hoc Networks (VANETs) have significantly improved the efficiency of traffic systems, but there are many security concerns, such as reliable message exchange and privacy-preserving. Besides, under resource-limited conditions, many signed safety-related messages need to be verified in a short period of time. For such, many Certificate-Less Aggregate Signature (CLAS) schemes are proposed. However, some existing CLAS schemes need an efficient algorithm to detect invalid signatures when aggregate verification fails or the proposed algorithms have some unnecessary computation overhead. To overcome such issues, we propose an efficient CLAS scheme that not only fulfills security requirements in VANETs but also provides an improved algorithm to detect invalid signatures with the corresponding real identities. In addition, under the Random Oracle Model (ROM) based Computational Diffie–Hellman (CDH) assumption, we demonstrate that the proposed CLAS scheme is existentially unforgeable under adaptively chosen message attacks (EUF-ACMAs). Performance analysis shows that the proposed scheme is more advantageous in terms of computation overhead and security than other existing schemes.</div></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"89 ","pages":"Article 104001"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212625000390","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicular Ad-hoc Networks (VANETs) have significantly improved the efficiency of traffic systems, but there are many security concerns, such as reliable message exchange and privacy-preserving. Besides, under resource-limited conditions, many signed safety-related messages need to be verified in a short period of time. For such, many Certificate-Less Aggregate Signature (CLAS) schemes are proposed. However, some existing CLAS schemes need an efficient algorithm to detect invalid signatures when aggregate verification fails or the proposed algorithms have some unnecessary computation overhead. To overcome such issues, we propose an efficient CLAS scheme that not only fulfills security requirements in VANETs but also provides an improved algorithm to detect invalid signatures with the corresponding real identities. In addition, under the Random Oracle Model (ROM) based Computational Diffie–Hellman (CDH) assumption, we demonstrate that the proposed CLAS scheme is existentially unforgeable under adaptively chosen message attacks (EUF-ACMAs). Performance analysis shows that the proposed scheme is more advantageous in terms of computation overhead and security than other existing schemes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Information Security and Applications
Journal of Information Security and Applications Computer Science-Computer Networks and Communications
CiteScore
10.90
自引率
5.40%
发文量
206
审稿时长
56 days
期刊介绍: Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信