Exploring thermoelectric conduction in new graphene-based molecular junctions dispositive: A computational perspective

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Jonathan A. Da Silva , Gabriela Monteiro B. Da Silva , Roberta P. Dias , Augusto Cesar L. Moreira , Julio C.S. Da Silva
{"title":"Exploring thermoelectric conduction in new graphene-based molecular junctions dispositive: A computational perspective","authors":"Jonathan A. Da Silva ,&nbsp;Gabriela Monteiro B. Da Silva ,&nbsp;Roberta P. Dias ,&nbsp;Augusto Cesar L. Moreira ,&nbsp;Julio C.S. Da Silva","doi":"10.1016/j.comptc.2025.115141","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates graphene-based materials as potential candidates for molecular junction devices in thermoelectric applications. Using Density Functional Theory, Landauer-Büttiker scattering theory, and the complex absorbing potential technique, we examined molecular systems with pyrene as the conductive wire and graphene or aza-graphene as electrodes. The calculated conductance values (6.20 × 10<sup>−4</sup> G₀ and 1.80 × 10<sup>−5</sup> G₀ for graphene and aza-graphene systems, respectively) reveal a tenfold increase in the graphene system due to transport through the LUMO orbital. The thermoelectric power values (0.5–2.5 μV·K<sup>−1</sup>) were comparable to those of gold-based systems. Chemical modifications, such as the insertion of NO₂ into pyrene, further enhanced conductance. These findings underline the molecular structure's critical role in determining transport properties and place graphene-based systems as viable thermoelectric materials.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1246 ","pages":"Article 115141"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25000775","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates graphene-based materials as potential candidates for molecular junction devices in thermoelectric applications. Using Density Functional Theory, Landauer-Büttiker scattering theory, and the complex absorbing potential technique, we examined molecular systems with pyrene as the conductive wire and graphene or aza-graphene as electrodes. The calculated conductance values (6.20 × 10−4 G₀ and 1.80 × 10−5 G₀ for graphene and aza-graphene systems, respectively) reveal a tenfold increase in the graphene system due to transport through the LUMO orbital. The thermoelectric power values (0.5–2.5 μV·K−1) were comparable to those of gold-based systems. Chemical modifications, such as the insertion of NO₂ into pyrene, further enhanced conductance. These findings underline the molecular structure's critical role in determining transport properties and place graphene-based systems as viable thermoelectric materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信