Variations in Venusian magnetic topology during an interplanetary coronal mass ejection passage: A multifluid magnetohydrodynamics study

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Jianing Zhao, Haoyu Lu, Jinbin Cao, Christian Mazelle, Yasong Ge, Shibang Li, Nihan Chen, Yihui Song, Jianxuan Wang, Yuchen Cao
{"title":"Variations in Venusian magnetic topology during an interplanetary coronal mass ejection passage: A multifluid magnetohydrodynamics study","authors":"Jianing Zhao, Haoyu Lu, Jinbin Cao, Christian Mazelle, Yasong Ge, Shibang Li, Nihan Chen, Yihui Song, Jianxuan Wang, Yuchen Cao","doi":"10.1051/0004-6361/202452479","DOIUrl":null,"url":null,"abstract":"The global effects on Venusian magnetic topology and ion escape during the significant solar-wind disturbances caused by the interplanetary coronal mass ejection (ICME) remain an open area of research. This study examined a particularly intense ICME interaction with Venus on November 5, 2011, using a global multifluid magnetohydrodynamics (MHD) model. To evaluate Venus’s time-dependent response to the event, the model was driven by varying solar-wind input conditions. The numerical results indicate that there are more draped and open magnetic-field lines at low altitudes due to deeper interplanetary magnetic-field (IMF) penetration resulting from the enhanced solar-wind dynamic pressure during the ICME. Conversely, the closed magnetic-field lines gradually decrease after the ICME reaches Venus due to the reduction in magnetic reconnection influenced by a shift in the magnetic topology direction. In the magnetotail escape channel, the increased presence of open field lines intersecting the ionosphere promotes greater ion outflow, thereby facilitating ion escape. The escape rates of planetary ions are enhanced by about an order of magnitude under ICME sheath conditions. This comprehensive investigation of the global distribution of magnetic topology around Venus provides valuable insights into the magnetic-field properties and ion escape during disturbed conditions.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"53 4 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452479","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The global effects on Venusian magnetic topology and ion escape during the significant solar-wind disturbances caused by the interplanetary coronal mass ejection (ICME) remain an open area of research. This study examined a particularly intense ICME interaction with Venus on November 5, 2011, using a global multifluid magnetohydrodynamics (MHD) model. To evaluate Venus’s time-dependent response to the event, the model was driven by varying solar-wind input conditions. The numerical results indicate that there are more draped and open magnetic-field lines at low altitudes due to deeper interplanetary magnetic-field (IMF) penetration resulting from the enhanced solar-wind dynamic pressure during the ICME. Conversely, the closed magnetic-field lines gradually decrease after the ICME reaches Venus due to the reduction in magnetic reconnection influenced by a shift in the magnetic topology direction. In the magnetotail escape channel, the increased presence of open field lines intersecting the ionosphere promotes greater ion outflow, thereby facilitating ion escape. The escape rates of planetary ions are enhanced by about an order of magnitude under ICME sheath conditions. This comprehensive investigation of the global distribution of magnetic topology around Venus provides valuable insights into the magnetic-field properties and ion escape during disturbed conditions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信