Enhancing Selective Hydrofluorocarbon Greenhouse Gas Capture via Halogenation of Metal–Organic Frameworks

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ronald T. Jerozal, Jaehwan Kim, Carolyn Ma, Tristan A. Pitt, Jung-Hoon Lee, Phillip J. Milner
{"title":"Enhancing Selective Hydrofluorocarbon Greenhouse Gas Capture via Halogenation of Metal–Organic Frameworks","authors":"Ronald T. Jerozal, Jaehwan Kim, Carolyn Ma, Tristan A. Pitt, Jung-Hoon Lee, Phillip J. Milner","doi":"10.1021/jacs.5c00393","DOIUrl":null,"url":null,"abstract":"Hydrofluorocarbons (HFCs) are anthropogenically produced greenhouse gases with longer atmospheric lifetimes and higher global warming potentials than those of carbon dioxide. General strategies to abate their emissions from industrial point sources, such as via adsorptive capture, remain scarce. Herein, we uncover the key structure–property relationships that lead to strong binding of HFCs such as fluoroform (CHF<sub>3</sub>) and difluoromethane (CH<sub>2</sub>F<sub>2</sub>) in metal–organic frameworks (MOFs) under the low pressures relevant to flue gas scrubbing. Extensive gas sorption and computational studies support that the Zr-based microporous framework MOF-801-Br or HHU-2-Br (HHU = Heinrich-Heine-University Düsseldorf) strongly binds HFCs due to its synergistic combination of Zr-OH sites on the nodes and bromine sites on the linkers. As such, MOF-801-Br demonstrates a record-setting performance for separating CHF<sub>3</sub> from N<sub>2</sub> under dilute conditions. Our work highlights that the combination of multiple hydrogen-bonding sites in microporous MOFs represents a generalizable strategy for HFC capture, enabling their selective removal from industrial waste streams.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"23 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c00393","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrofluorocarbons (HFCs) are anthropogenically produced greenhouse gases with longer atmospheric lifetimes and higher global warming potentials than those of carbon dioxide. General strategies to abate their emissions from industrial point sources, such as via adsorptive capture, remain scarce. Herein, we uncover the key structure–property relationships that lead to strong binding of HFCs such as fluoroform (CHF3) and difluoromethane (CH2F2) in metal–organic frameworks (MOFs) under the low pressures relevant to flue gas scrubbing. Extensive gas sorption and computational studies support that the Zr-based microporous framework MOF-801-Br or HHU-2-Br (HHU = Heinrich-Heine-University Düsseldorf) strongly binds HFCs due to its synergistic combination of Zr-OH sites on the nodes and bromine sites on the linkers. As such, MOF-801-Br demonstrates a record-setting performance for separating CHF3 from N2 under dilute conditions. Our work highlights that the combination of multiple hydrogen-bonding sites in microporous MOFs represents a generalizable strategy for HFC capture, enabling their selective removal from industrial waste streams.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信